

BUILDING A SKILLED AND INCLUSIVE SOCIETY THROUGH EDUCATIONAL TECHNOLOGY IN SCHOOL AND WORKPLACE

Nwuche Emmanuella Chizoba, Kechinyere Chinda

Department of Educational Technology, Faculty of Education

Ignatius Ajuru University of Education

Port Harcourt, Rivers State, Nigeria

Email: emmanuella.nwuche@iaue.edu.ng

<https://orcid.org/0009-0006-9476-8388>

Received 08 November 2025 Received in revised form 16 November 2025 Accepted 18 November 2025

Received 22 November 2025

ABSTRACT

The rapid advancement of digital technologies has transformed the global landscape of education and employment, making digital competence a prerequisite for participation in contemporary society. This paper explores how educational technology (EdTech) can be strategically leveraged to build a **skilled** and **inclusive** society through its integration in both schools and workplace learning environments. Drawing on recent literature and international policy frameworks, the study examines how EdTech enhances access to quality learning, fosters digital and socio-emotional skills, and supports lifelong learning pathways. The article highlights key mechanisms for inclusive participation, such as assistive technologies, open educational resources, micro-credentialing, and blended learning models that address diverse learner needs and labour-market demands. It also discusses the challenges of digital divides, unequal access, and insufficient teacher or trainer preparedness that threaten to widen socio-economic disparities. The paper proposes a three-pillar framework linking digital inclusion, pedagogical innovation, and labour-market alignment as essential components for effective EdTech integration. Findings suggest that when supported by sound policies, equitable access, and strong institutional collaboration, educational technology can drive sustainable human capital development and social inclusion. The study concludes that building a skilled and inclusive society requires not just technological adoption but a systemic commitment to accessibility, competence-based learning, and continuous reskilling across the education work continuum.

Keywords: Educational technology, inclusion, digital skills, lifelong learning, micro-credentials, workplace learning, human capital development.

1. INTRODUCTION

Digital transformation and changing labour market demands have placed a premium on both technical and transferable skills. At the same time, persistent inequalities by socio-economic status, geography, gender, and disability continue to shape who benefits from digital learning opportunities. The rapid expansion of digital technologies has fundamentally transformed how people learn, work, and participate in society. Although the COVID-19 pandemic was devastating in many respects, it made educational continuity unmistakable while exposing sharp inequalities in access, readiness, and outcomes. Global analyses show that the pandemic amplified learning losses and disproportionately affected vulnerable learners, underscoring the risk that technology-first approaches can intensify pre-existing inequalities unless implemented with equity at the centre.

While the conceptual foundations of inclusive educational technologies (IETs) are well established, empirical evidence from developing countries provides deeper insight into their transformative potential and contextual challenges. Across sub-Saharan Africa including Nigeria, Kenya, Ghana, and South Africa, a growing body of research demonstrates how educational technologies can both bridge and expose inequalities in access, participation, and learning outcomes.

During the pandemic, digital learning became a lifeline for educational continuity but also revealed systemic disparities. According to Afolabi and Olayinka [1] Nigerian universities' transition to online platforms exposed critical infrastructure gaps, particularly in rural and low-income regions where internet penetration and device ownership remain limited.

Nonetheless, where mobile-based learning applications and radio-assisted instruction were adopted, student engagement and learning continuity improved significantly. Similarly, Okoye and Nwafor [2] found that secondary schools leveraging open educational resources (OERs) and WhatsApp-based learning groups recorded higher participation rates among marginalized students, underscoring the adaptability of low-cost, accessible technologies.

In East Africa, Wambugu et al. [3] examined digital inclusion projects in Kenya's teacher education institutions and reported that training pre-service teachers in the use of assistive and adaptive technologies enhanced their capacity to deliver inclusive lessons to learners with disabilities. This finding aligns with UNESCO [4] which emphasizes that teacher preparedness and local innovation are key predictors of successful EdTech integration in low-resource settings. In Ghana, Boateng and Tenkorang [5] showed that integrating mobile learning platforms into Technical and Vocational Education and Training (TVET) institutions improved female learners' digital competencies and employability outcomes highlighting the potential of gender-responsive EdTech interventions to address disparities in access to STEM and digital entrepreneurship.

In Nigeria, empirical evidence also supports the role of inclusive technologies in special education. Eze and Okonkwo [6] found that the use of screen readers, Braille translators, and adaptive software significantly improved literacy and numeracy among visually impaired learners in inclusive classrooms. Similarly, Ogunyinka and Adeleke [7] observed that deploying AI-powered translation tools in multilingual schools facilitated communication and comprehension for learners from minority language backgrounds, fostering social inclusion. Beyond formal education, EdTech has proven vital in expanding access to workplace learning and lifelong skills development. The World Bank [8] reported that digital skilling initiatives across Nigeria and Rwanda particularly those targeting youth and women enhanced employability by over 35%, especially in ICT-related fields. Community-based digital learning hubs in Lagos and Kigali demonstrated that when affordable and contextually adapted, EdTech can foster entrepreneurship, digital literacy, and economic resilience among disadvantaged populations.

Adefila et al. [9] and Tella and Ojo [10] identified persistent barriers such as unreliable power supply, high bandwidth costs, and insufficient teacher digital competence as major impediments to equitable EdTech adoption. They recommend capacity-building initiatives, infrastructure investment, and gender-sensitive inclusion frameworks to ensure sustainability. Taken together, these empirical

findings affirm that inclusive educational technologies can indeed foster skill acquisition, empowerment, and participation provided that structural inequities are addressed. Inclusion through technology is therefore not merely a theoretical aspiration but an emerging reality across African education systems, even amid economic and infrastructural constraints.

Inclusive education aims to promote equal opportunities and participation in learning for all students, regardless of ability or background. One of the most effective pathways to achieving this is through technology. As digital innovations advance, they have become increasingly vital to inclusive educational practices. Simultaneously, labour markets now demand digital competencies alongside cognitive and socio-emotional skills. Policymakers and employers are experimenting with short, stackable credentials and employer-based digital upskilling as mechanisms to respond rapidly to evolving skill needs. The central challenge is ensuring that EdTech interventions whether in schools or workplaces are aligned with inclusive pedagogies and coherent skill pathways, thereby contributing to both social inclusion and employability. Educational technology offers scalable solutions for skill development across the education–work continuum, yet its impact remains uneven and mediated by access, pedagogy, assessment, and governance. This study therefore asks: Under what conditions does educational technology build both a skilled and inclusive society across schools and workplaces?

II. ENHANCING INCLUSIVE EDUCATION.

The use of technology in education has the potential to revolutionize the way educators approach inclusive education. Assistive technology can help students with special educational needs (SEN) or language difficulties feel accepted and fulfilled in the classroom, while also promoting equal opportunities and enhancing the overall educational journey for all students. However, teacher training is a fundamental challenge for inclusion in schools. Educators need to be offered professional development and training programs to enhance their knowledge and skills in utilizing assistive technology effectively in the classroom. Ongoing research and development are also required to improve existing assistive technologies and create new solutions. Accessible technology can assist learners with disabilities, and the goal is to nurture a more inclusive educational experience.

Benefits

Technology offers multiple benefits that can significantly transform the teaching and learning process.

It facilitates student participation by enabling broader interaction and collaboration, which in turn fosters dynamic learning environment. The availability of a variety of digital resources enriches educational content and allows students to access diverse and up-to-date information, thereby stimulating the development of critical and analytical skills. Furthermore, technology enables educators to reflect on and improve their pedagogical practices through the use of analytical tools that provide real-time feedback on the effectiveness of their teaching methods. Students can explore and debate topics related to social justice and diversity, adapting to various needs and learning styles, which contributes to a more equitable education tailored to individual needs. Lusigi [11] highlights how in South Africa, the use of ICT has improved educational quality not only by increasing enrollment and access to distance education but also by enhancing "learning productivity." This is achieved by optimizing costs and customizing teaching to meet specific labour market and community needs, enabling students to acquire skills that are immediately applicable in professional environments. On the other hand, Kim and Higgs [12] observe that technology allows future teachers to build more through digitally mediated interactions. This approach contributes to a deeper and more critical understanding of literacy in the current digital context and underscores the potential of technology to address racial and cultural gaps in education. Similarly, Coker and Mercieca [13] emphasize how, by addressing the digital divide, especially in rural areas, technology promotes greater equity in educational participation. Access to digital resources facilitates real-time connections to global resources, enriching learning and fostering international collaboration among students. This enables students, regardless of geographical location, to access quality educational opportunities, thus overcoming the traditional limitations imposed by distance and physical resources. Together, these benefits highlight powerful facilitator of more inclusive, equitable, and high-quality education, preparing students to be effective global citizens in an increasingly interconnected society.

III. GENERAL USE OF TECHNOLOGIES IN INCLUSIVE EDUCATION (GENDER, SOCIAL, AGE INCLUSION, ETC.)

- Conversion of content into different formats to facilitate universal access to education.
- Tools that allow students to study at their own pace.
- Creating more engaging, social, and motivating learning environments.

- Assistive technology for effective interaction with educational content.
- Use for exploration and learning in various formats.
- Access to educational content for students in remote locations
- Computer-assisted language learning, for linguistic diversity
- Creation of collaborative digital mind maps, creativity and imagination.
- Creative writing, automatic translation and summarization of texts. Automatic creation and editing of images

Visual disability

- Screen readers, screen magnifiers, audiobooks.
- Touch screens, Braille displays, voice synthesizers.
- Convert digital content to multiple formats: MP3, tagged PDF, HTML, ePub.
- Conversion of digital content into various formats: MP3, tagged PDF, HTML, ePub.
- Audio-tactile graphics, audio descriptions, applications for learning mathematics.
- Augmented reality for exploring and recognizing shapes.
- Technologies for parents and teachers of blind children, such as learning Braille.
- Conversion of Braille to text.
- Navigation systems for determining movement routes. Creation of virtual learning environments to develop visual skills.

Hearing disability

- Videophone, sign language interpreters, animated sign language interpreters.
- Voice-to-text and text-to-voice conversion.
- Conversion of sign language to text and text to sign language.
- Technologies for parents and teachers of deaf children to learn sign language.
- Manipulators for people with hearing and speech disabilities

Physical motor disability

- Adapted keyboards, joysticks, trackballs, head control systems, foot mouse.
- Keyboard modifications and manipulators for people with musculoskeletal disorders.
- Digital pen, instructional screens, pointing devices.
- Aids for writing, practical activities, and improving functional skills.
- Evaluation of muscle strength and endurance using technology.

- Assistive technology to enhance functional capabilities.
- Creation of interactive support environments that allow the use of multiple interaction methods (voice, text, video, touch, gestures).

Intellectual and cognitive disability

- Personalized and adaptive learning systems.
- Computer games to enhance skills and correct speech disorders.
- Devices programmed with specific vocabulary.
- Psychological support and individual tutoring.
- Creation of artificial learning companions.
- Multisensory learning environments.
- Facilitate personalized learning by adapting resources to specific needs.
- Use of technologies to diagnose dyslexia and other reading difficulties.
- STEM projects and technologies that enable participation in inclusive educational environments.

IV. INCLUSIVE SOCIETY

An inclusive society is one that transcends differences of race, gender, class, generation and geography to ensure inclusion, equality of opportunity and the capability of all members of society to determine the social institutions that govern their interaction [UNDESA] [14]. [WSSD], [15] describes inclusive society as “a society for all individual, each with rights and responsibilities, and has an active role to play”. Such a society must be anchored in human rights and fundamental freedoms, cultural and religious diversity, justice, democratic participation.

There are various perspectives on inclusive society function. For example, integration forms may simply imply a stable community in which people can find a niche Taylor [16]. This expression highlights that social integration and inclusion do not imply uniform of people, but a society that accommodates difference while fostering engagement. To achieve social inclusion, the voices, needs and concerns of people from diverse backgrounds must be heard and valued. Not just some, but all citizens must have a stake in and a voice within their shared society. This inclusiveness underpins societal stability while enabling readiness for change when necessary. International human rights law, requires governments to respect civil and political rights, such as free speech, fair trial, and political participation and to promote economic, social and cultural rights, such as rights to education [17].

Inclusive society members, do not just have access to education or political participation, they are actively

engaged, for example, by using their right to make education truly meaningfully, and by casting a vote that counts in a truly participatory political process. The critical factor is the individual's active involvement shaping, governing and represent society. An inclusive society is grounded in the fundamental human-rights value that “all human beings are born free and equal in dignity and rights [18]. It is a society in which all members, regardless of their backgrounds, are empowered and inspired to take part in civic, social, economic and political life. For this to happen, legal regulatory and policy frameworks need to be inclusive and support fair and equitable process at all levels of implementation. This means equal access to basic education, public spaces, information, and facilities; the respect and accommodation of diversity and cultural pluralism; and the impartial inclusion of everyone, governed by the rule of law.

To create and sustain inclusive societies, it is critical that all members are motivated to take part in civic, social, economic and political activities. A society where most members feel that they are playing a part, have access to basic livelihoods and opportunities, and participate in decision-making that affects their lives is better positioned to uphold principles of inclusiveness. A strong civil society is fundamental to this process: it enables active participation, holds institutions accountable, fosters mutual respect for rights and responsibilities, and strengthens social bonds.

Inclusive societies embrace diverse expressions of identity; by acknowledging and valuing the unique characteristics and experiences of all members, such communities move away from labelling or categorizing people in narrow ways and instead adopt policies that accommodate plurality. Diverse opinions and perspectives provide critical checks and balances for societal development. Education plays a vital role: it creates opportunities to learn the history and culture of one's own and other societies, fosters understanding and appreciation of others' cultures and religions, and empowers those who are marginalized to participate in dialogue and decision-making. Education thereby influences values, choices and judgments especially of those in decision-making positions.

Effective leadership plays a vital role in shaping and fostering an inclusive society. When leadership does not reflect the society it serves, a disconnect between people and their leaders may develop. A society without a vision for the future risks decline. Societies that maintain a shared vision embraced by the community and encourage broad stakeholder participation in formulating that vision are more inclusive, as all members are working synergistically toward a common objective [14].

V. BUILDING A SKILLED AND INCLUSIVE SOCIETY THROUGH EDUCATIONAL TECHNOLOGY.

Education remains the cornerstone of human development, social cohesion, and inclusive growth. Technological innovation has revolutionized educational delivery systems, creating unprecedented opportunities for equity, inclusion, and lifelong learning. *Inclusive educational technologies* (IETs) refer to digital tools, systems, and pedagogical innovations that are deliberately designed or adapted to accommodate learners, regardless of their physical, cognitive, socioeconomic, cultural, or geographical differences.

In an era characterized by rapid digitalization, global economic recession, and widening inequalities, IETs have become powerful instruments for building inclusive societies. They eliminate barriers, expand access to marginalized groups, and promote democratic participation in knowledge creation. According to UNESCO [4], the digital transformation of education "must be inclusive by design and equitable by intent," implying that technological innovation should serve social justice and human rights rather than deepen existing divides.

This article is grounded in a three-pillar conceptual framework that links inclusive educational technology (IET) to the development of a skilled and inclusive society. The framework is built around three interrelated pillars: digital inclusion, pedagogical innovation, and labour-market alignment. Together, these pillars explain how technology-mediated education can simultaneously promote equity, quality learning, and employability in both school and workplace contexts.

VI. DIGITAL INCLUSION

Digital inclusion refers to equitable digital tools, affordable connectivity, and the competencies required to use them effectively. It encompasses both infrastructural access (devices, electricity, and connectivity) and social access (digital literacy, affordability, and cultural relevance). Inclusive digital transformation requires that all learners—regardless of gender, disability, location, or socio-economic status—can meaningfully participate in online and blended learning environments (UNESCO, [4]; World Bank, [8]).

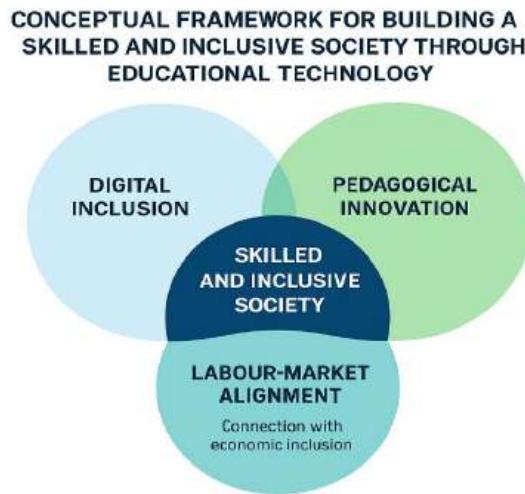
In African education systems, digital inclusion also implies local innovation for example, the use of low-cost mobile devices, community learning hubs, and radio or television-based instruction to extend opportunities to marginalized groups. It ensures that

technological adoption does not deepen inequality but instead expands opportunity and bridges access gaps (Afolabi & Olayinka, [1]; Okoye & Nwafor, [2]).

Pedagogical Innovation

Pedagogical innovation involves blending digital tools with teaching methods in a way that is both creative and effective. Inclusive pedagogical innovation goes beyond providing access, it transforms the learning experience through personalization, collaboration, and accessibility.

Examples include the use of assistive technologies for learners with disabilities, AI-powered translation tools in multilingual classrooms, and open educational resources (OERs) that allow flexible and equitable access to quality learning content (Eze & Okonkwo, [6]; Ogunyinka & Adeleke, [7]; Wambugu et al. [3]). Pedagogical innovation thus ensures that technology supports diverse learners' needs, strengthens teacher capacity, and fosters critical thinking and creativity essential for 21st-century citizenship.


Labour-Market Alignment

The third pillar connects education with economic inclusion through skill development aligned to evolving labour-market needs. Labour-market alignment emphasizes digital skills, vocational competencies, and lifelong learning pathways that enable individuals to adapt to changing work environments.

As the World Bank [8] reports, digital skilling initiatives in Nigeria and Rwanda have enhanced youth and women's employability, particularly in ICT sectors. By integrating short, stackable credentials and workplace-based digital training, educational technology supports a seamless transition from school to work. Effective labour-market alignment ensures that digital learning translates into sustainable livelihoods, entrepreneurship, and social mobility, thus advancing both individual empowerment and societal inclusion (Boateng & Tenkorang, [5]; Adefila et al., [9]).

VII. INTEGRATIVE PERSPECTIVE

These three pillars are interdependent (see Figure 1). Digital inclusion provides equitable access to technology; pedagogical innovation ensures that learning through technology is inclusive and effective; and labour-market alignment connects acquired skills to real economic opportunities. When these pillars are coherently integrated, educational technology becomes a catalyst for building societies that are not only digitally skilled but also socially inclusive, resilient, and future-ready.

VIII. EXPANDING ACCESS TO QUALITY EDUCATION

One of the most direct contributions of inclusive educational technologies to an inclusive society is their capacity to expand quality education for citizens. Traditional education system often left learners in remote, economically disadvantaged areas on the periphery. Digital platforms such as, online learning management systems, and mobile learning applications remove barriers of distance, cost, and infrastructure.

Mobile-based learning, for example, has become a critical channel for learners in sub-Saharan Africa and Southeast Asia, remains limited. The World Bank [19] reports that digital learning platforms can increase participation rates among marginalized groups by up to 40% when supported by affordable connectivity and inclusive policy frameworks.

Assistive technologies (AT) including screen readers, speech-to-text software, audio captioning, and sign-language interpretation enable learners with disabilities to engage in learning environments. Hersh and Johnson [20] emphasize that such technologies not only provide access but also foster independence, dignity in social life. By providing multiple pathways to learning, inclusive technologies democratize education, transforming it from a privilege into a universal right. An educated and engaged populace, in turn, becomes the foundation of an inclusive and participatory society.

IX. ENHANCING PARTICIPATION, COLLABORATION, AND AGENCY

Beyond access, IETs enhance participation and learner agency. Active participation is a fundamental principle of inclusion, reflecting not only the right to education, also the right to be heard, seen, and valued within learning spaces. Digital environments such as virtual classrooms, multimedia collaboration tools, and gamified learning platforms encourage interaction and engagement. AI-driven adaptive learning systems personalize learning pathways, allowing students from diverse backgrounds to progress according to their unique capabilities and preferences Kimmons & Veletsianos, [21].

These participatory technologies foster collaborative learning and intercultural dialogue, connecting learners across regions and cultures. For instance, international virtual exchange programs facilitate shared problem-solving and discussion of global issues, cultivating empathy, mutual understanding, and tolerance core values of inclusive societies (García-Holgado et al., [22]. Furthermore, digital discussion forums and peer-assessment systems democratize voice and participation, ensuring that marginalized learners have equitable opportunities to contribute as co-creators of knowledge.

X. EMPOWERING MARGINALIZED AND DISADVANTAGED GROUPS

Inclusive educational technologies empower individuals that have historically been excluded such as women, persons with disabilities, ethnic minorities, refugees, and those in poverty. Empowerment occurs when individuals acquire not only digital skills but also the confidence and agency to use technology to shape their futures.

Al-Azawi, Serenelli, and Lundqvist [23] note that inclusive technologies promote autonomy and self-determination, especially learners with disability, by providing tools that facilitate independent learning. For example, community-based e-learning initiatives across Africa and South Asia have enabled women and girls to access education despite sociocultural barriers (UNESCO) [24]. Similarly, solar-powered digital classrooms and offline e-learning tablets in refugee settlements allow displaced children to continue learning, preserving hope and social inclusion. This empowerment transcends the classroom: as learners gain technological competence and confidence, they become capable of civic participation, entrepreneurship, and leadership helping to reshape their communities toward inclusion and equality.

XI. PROMOTING EQUITY, INCLUSION, AND LIFELONG LEARNING

Inclusive society is sustained by equitable, lifelong learning opportunities. IETs make this possible by enabling flexible and affordable learning across all stages of life. (MOOCs), micro-credentialing programs, and online vocational training expand access to skills development for youth, adults, and workers, particularly in times of economic recession (OECD) [25]. Guided by (UDL) principles, inclusive educational technologies ensure that digital content accommodates varying abilities, languages, and learning preferences (Al-Azawi et al.,[23]). When integrated with inclusive education policies—such as equitable internet access, device affordability, and teacher digital literacy these technologies become tools of social justice. Equity in education produces equity in society: citizens who experience inclusion in learning, will practice inclusion in workplaces, governance, and community life.

XII. FOSTERING SOCIAL COHESION, CULTURAL DIVERSITY, AND SHARED IDENTITY

Education has long been a mechanism for transmitting values and building social cohesion. Inclusive technologies extend this function by enabling cross-cultural collaboration and digital citizenship. Platforms for intercultural learning, virtual exchanges, and global classrooms expose learners to diverse worldviews, nurturing respect and understanding. Allam et al. [26] observed that, COVID-19 pandemic technology-mediated education fostered empathy and solidarity among students globally, even amidst physical isolation. Similarly, virtual museums, digital storytelling platforms, and online heritage archives promote cultural literacy and diversity. Through such engagement, Inclusive educational technologies (IETs) cultivate global citizenship and collective

identity essential elements of inclusive societies that balance unity with diversity.

XIII. ADVANCING INCLUSIVE ECONOMIC GROWTH AND EMPLOYABILITY

In today's knowledge economy, equitable access to education and skills is vital for inclusive economic growth. IETs help bridge the gap between education and employment, by offering accessible, flexible, and industry-relevant learning. Digital training in (TVET) equips individuals with employable skills and digital competencies. TILO [27] reports that inclusive digital training programs have expanded job access for women and youth in low-income economies by reducing cost and time barriers.

AI-enabled career guidance systems, remote apprenticeship programs, and online entrepreneurship courses empower learners to participate productively in the digital economy. By fostering employability, innovation, and social mobility, IETs contribute to reducing inequality and building economic resilience, key pillars of an inclusive society.

XVI. TRANSFORMING EDUCATIONAL MANAGEMENT AND GOVERNANCE TOWARD INCLUSION

Inclusive technologies also reshape educational management, leadership, and governance. Data-driven systems such as Education Management Information Systems (EMIS), digital dashboards, and learning analytics enable administrators to identify gaps in access, performance, and resource allocation [25]. These insights guide equitable decision-making and targeted interventions.

Moreover, technology facilitates participatory governance through digital feedback systems, online consultation platforms, and parent-teacher communication apps. Such mechanisms enhance transparency, accountability, and trust—hallmarks of inclusive institutions. Thus, Inclusive educational technologies (IETs) promote inclusion not only in learning but also in the administration and governance of education systems.

Ethical, Infrastructural, and Policy Considerations

The promise of inclusive educational technologies can only be realized if ethical, infrastructural, and policy challenges are addressed. Digital divides arising from unequal access to devices, connectivity, or digital literacy risk reinforcing exclusion. UNESCO [4] warns that without deliberate inclusion strategies; the digital revolution could exacerbate inequality.

Governments must, therefore, implement comprehensive digital inclusion policies encompassing affordable connectivity, gender-responsive technology initiatives, teacher training, and investment in infrastructure.

Public-private partnerships and community-based digital hubs can also bridge technological gaps. Ethical frameworks must guide the use of AI, big data, and surveillance technologies to protect privacy, autonomy, and fairness in digital education. Inclusive technology must consciously counter inequality, not digitize it.

Inclusive educational technologies are not mere instructional innovations; they are social equalizers and engines of transformation. By expanding access, deepening participation, empowering marginalized groups, and promoting lifelong learning, these technologies nurture the values of equity, respect, and collaboration essential for inclusive society. For nations in economic recession, investing in inclusive digital education is both a moral obligation and a strategic pathway to recovery, social stability, and sustainable development. As UNESCO [4] affirms, “a digital education system that leaves no one behind is the foundation of a world that leaves no one behind.”

Finally, Technological tools in inclusive education facilitates tailored content and teaching approaches, catering to students' unique needs, and promoting accessibility, autonomy and personalized learning. The general use of these technologies includes converting content into accessible audiobooks, Braille files or adapted digital formats, which facilitates universal access to education. Moreover, they allow students to work at their own pace, promoting a more engaging and motivating learning experience through interaction with dynamic digital environments, such as virtual and augmented reality. Students with visual impairments benefits from technologies such as screen readers, digital magnifiers, and voice synthesizers which convert text into audio format, thereby facilitating direct access to information. Tools like touchscreens and Braille displays conversion of content into accessible formats (MP3, ePub, tagged PDFs), allow students to interact with educational materials tailored to their needs. Applications with audio-tactile graphics and navigation systems, also improve their independence and understanding of the environment. Additionally, augmented reality offers a new way to explore visual concepts, such as shapes and graphs, in a sensory manner.

XV. CHALLENGES OF TECHNOLOGY IN INCLUSIVE EDUCATION

Unequal access to technologies represents challenges in inclusive education, especially noticeable in rural areas and among students from different socioeconomic levels. Kormos and Julio [28] highlights lack of adequate technological infrastructure, including limitations in hardware and software, amplifies the digital divide and complicates technologies into the educational process. This

disparity in access underscores the need not only to provide technological tools, but ensure that they are adequate and functional for all students.

Another significant challenge is the lack of skills or competencies in teachers use of technology. Insufficient training of teachers in handling new technologies limits their ability to integrate these tools effectively into their teaching methodologies. This is exacerbated by the general lack of teacher training, which prevents educators from adopting pedagogical practices that maximize the benefits of technology in inclusive educational settings.

Furthermore, accessibility issues in applications and virtual platforms, such as difficulties in generating image descriptions, proper semantic structuring, keyboard navigation, and content synchronization, present additional barriers. Acosta-Vargas et al. [29] emphasize that accessibility evaluation should be thorough and multifaceted, using both automatic and manual assessments to better understand the barriers faced by users with disabilities. It is crucial to integrate accessibility principles from the early stages of technology development, as well as to consider the ethical implications associated with their use.

Additionally, an excessive dependence on technology, particularly artificial intelligence, can undermine the development of critical thinking and research skills. Lin et al. [30] point out how technology can demotivate students by reducing their effort in learning, and how web search engines and AI often provide incorrect or irrelevant answers. These authors also highlight the ethical challenges associated with academic integrity and the impact of false accusations of plagiarism on student well-being, underscoring the need for careful and ethical implementation of technology in education.

Wen and Castek [31] mention that it is fundamental to focus on fostering critical understanding and meaningful use of technology, rather than merely providing access to tools. This involves integrating exploration and fabrication skills, promoting collaboration and knowledge sharing, and maintaining a critical perspective on communities. Moreover, it is essential to combine technological literacy with content knowledge and pedagogy.

XVI. CONCLUSION

In an era of accelerating digital transformation, the challenge is not only the adoption of educational technology, but its meaningful integration to build a truly skilled and inclusive society. When educational technology is embedded within equitable access frameworks, aligned pedagogy, and responsive labour market pathways it transforms learning, work and participation.

The evidence suggests that inclusive digital ecosystems characterized by assistive technologies, open educational resources, micro-credentialing, blended models and lifelong-learning infrastructure can reduce deficits in skills, enhance social inclusion and foster economic resilience. However, these benefits will not materialize automatically. They require a systemic commitment, policies that guarantee universal connectivity and device access, teacher/trainer capacity-building in inclusive pedagogy partnerships among education, industry and government to co-design curricula and trusted credentialing mechanisms that link learning to employment. As such, the journey toward a skilled, inclusive society is ongoing but achievable. Stakeholders, including educators, employers, policymakers and community actors, must collaborate with urgency and purpose. By embedding digital inclusion, pedagogical innovation and labour-market alignment into education work ecosystems, we can ensure that “no learner and no society is left behind.” In sum, the integration of educational technology must be viewed not as an end in itself, but as a vehicle for equity, agency and social participation. Only then will technology serve human flourishing, rather than deepen the divides it was meant to close.

XVII. RECOMMENDATIONS

To strengthen the role of educational technology in building a skilled and inclusive society, the following policy and institutional measures are recommended:

1. **Universal Digital Infrastructure and Access:**
Governments must ensure affordable, reliable, and equitable access to digital technologies for all citizens. Broadband expansion, device affordability schemes, and energy-efficient connectivity solutions are critical, particularly for rural and underserved populations [4]
2. **Inclusive Digital Pedagogy and Teacher Training:**
Teacher education programmes should embed modules on assistive technologies, and inclusive pedagogy to ensure that educators can adapt technology to meet diverse learner needs [31]
3. **Micro-Credentials and Workforce Alignment:**
Higher education institutions and industries should co-design micro-credential systems that validate competencies acquired through formal and informal learning, ensuring alignment with labour-market needs and employability outcomes (OECD [25]; World Bank [8].

4. **Lifelong Learning Ecosystems:**
Inclusive educational technology must support flexible learning pathways that allow individuals to learn, unlearn, and relearn across their lifespan. Open and blended learning environments should be institutionalized as part of national lifelong learning frameworks [4]
5. **Ethical Governance and Data Protection:**
The implementation of educational technology should respect data privacy, promote algorithmic fairness, and safeguard learners from bias or exclusion in AI-based learning systems [29]
6. **Cross-Sector Collaboration:**
Strong partnerships among government, academia, private technology providers, and civil society organizations are essential for scaling inclusive digital solutions and ensuring accountability in their implementation [8]
7. **Evidence-Based Monitoring and Evaluation:**
Regular assessment of EdTech initiatives should measure not only efficiency and reach but also inclusion, equity, and learner empowerment outcomes, disaggregated by gender, socioeconomic status, and disability [25]
8. **Localized Content and Contextual Adaptation:**
Digital tools and resources should reflect local languages, cultures, and labour-market realities. Indigenous knowledge and community participation should inform EdTech development to ensure cultural inclusivity and sustainability [4]

XVIII. CONCLUDING REFLECTION

Ultimately, the integration of inclusive educational technologies represents more than a pedagogical shift, it is a societal transformation. By aligning technology with the principles of equity, participation, and justice, nations can foster environments where every individual, regardless of background or ability, can learn, contribute, and thrive. In a recessed or resource constrained economy, such as Nigeria and many developing contexts, educational technology offers an affordable, scalable pathway to human capital development, democratic participation, and social cohesion. Inclusive society is therefore not merely a policy aspiration but a lived reality achieved through intentional design anchored in inclusive governance, ethical technology use, and lifelong learning for all.

REFERENCES

[1] Afolabi, F., & Olayinka, T. (2021). *E-learning adoption during COVID-19 lockdown in Nigerian universities: Challenges and prospects*. Journal of Education and Information Technologies, 26(6), 7125–7142.

[2] Okoye, U., & Nwafor, C. (2022). *WhatsApp-based learning and educational continuity in Nigerian secondary schools during COVID-19*. International Journal of Educational Research Open, 3(1), 100212.

[3] Wambugu et al. (2023). *Teacher training and inclusive digital pedagogy in Kenya's teacher education colleges*. African Education Review, 20(1), 81–99.

[4] United Nations Educational, Scientific and Cultural Organization (UNESCO) (2023). *Digital learning and inclusion for all: Policy brief*. Paris: UNESCO.

[5] Boateng, R., & Tenkorang, D. (2022). *Gender-responsive EdTech in TVET: Lessons from Ghana's mobile learning pilot*. International Review of Education, 68(4), 567–590.

[6] Eze, U., & Okonkwo, A. (2020). *Assistive technologies and inclusive learning outcomes among visually impaired students in Nigeria*. Journal of Special Education Technology, 35(3), 213–227.

[7] Ogunyinka, K., & Adeleke, O. (2023). *Artificial intelligence and multilingual inclusion in Nigerian classrooms*. British Journal of Educational Technology, 54(2), 1234–1251.

[8] World Bank. (2023). *Digital Skills for the Future of Work in Africa*. Washington, DC: The World Bank.

[9] Adefila, A., Musa, L., & Lawal, A. (2022). *Digital inclusion and access challenges in Nigerian secondary education: Post-pandemic reflections*. African Journal of Educational Technology, 8(2), 34–49.

[10] Tella, A., & Ojo, B. (2023). *Teacher readiness and digital equity in sub-Saharan Africa's education transformation*. Education and Information Technologies, 28(1), 145–162.

[11] Lusigi, A. (2019). Higher education, technology, and equity in Africa. *New Rev. Inf. Netw.* 24, 1–16. doi: 10.1080/13614576.2019.1608576

[12] Kim, H., & Higgs, B. (2023). *Digital inclusion and learner agency in online higher education*. British Journal of Educational Technology, 54(5), 2021–2038.

[13] Coker, H., and Mercieca, D. (2023). “*Digital Technology for Inclusive Education: reflecting on the role of teachers*” in *Inclusion, Equity, Diversity, and Social Justice in Education*. eds. S. S.

[14] UNDESA. (2008). *Creating an inclusive society: Practical strategies to promote social inclusion*. United Nations Department of Economic and Social Affairs.

[15] World Summit for Social Development (WSSD). (1995). *Copenhagen Declaration on Social Development*. United Nations.

[16] Taylor, C. (2007). *Inclusive society and social integration: Rethinking community cohesion*. Social Inclusion Review, 4(1), 1–12.

[17] UNDESA. (2009). *Report on global social inclusion indicators*. United Nations Department of Economic and Social Affairs.

[18] United Nations. (1948). *Universal Declaration of Human Rights*. United Nations General Assembly.

[19] World Bank. (2021). *Inclusive digital learning for development: A global policy framework*. Washington, DC: World Bank Publications.

[20] Hersh, M., & Johnson, M. A. (2020). *Assistive technology for visually impaired and blind people* (2nd ed.). Springer.

[21] Kimmons, R., & Veletsianos, G. (2022). *Navigating the shifting landscape of educational technology research: 2010–2021*. Computers & Education Open, 3, 100079.

[22] García-Holgado, A., Camacho Díaz, A., & García-Peñalvo, F. J. (2020). *Engaging women into STEM in Latin America: The W-STEM project*. Proceedings of the 8th International Conference on Technological Ecosystems for Enhancing Multiculturality, 713–719.

[23] Al-Azawei, A., Serenelli, F., & Lundqvist, K. (2019). *Universal design for learning (UDL): A content analysis of peer-reviewed journal papers from 2012 to 2015*. *Journal of the Scholarship of Teaching and Learning*, 19(2), 53–74.

[24] United Nations Educational, Scientific and Cultural Organization (UNESCO). (2022). *Global Education Monitoring Report 2022: Technology in education – A tool on whose terms?* Paris: UNESCO.

[25] OECD. (2022). *Digital Education Outlook 2022: Paving the Way for Inclusive Learning*. Paris: OECD Publishing.

[26] Allam, Z., Sharifi, A., Bibri, S. E., Jones, D. S., & Krogstie, J. (2023). *The technological and social dimensions of the COVID-19 pandemic and inclusive digital education*. *Sustainability*, 15(4), 2156. <https://doi.org/10.3390/su15042156>.

[27] TILO. (2022). *Technology in learning operations: Global inclusion report*. TILO Publications.

[28] Kormos, E., and Julio, L. (2020). Contrasting instructional technology adoption in K-12 education to promote digital equity. *Int. J. Web Based Learn. Teach. Technol.* 15, 19–30. doi: 10.4018/IJWLTT.2020070102.

[29] Acosta-Vargas, P., Acosta-Vargas, G., Salvador-Acosta, B., and Jadán-Guerrero, J. (2024). *Addressing web accessibility challenges with generative artificial intelligence tools for inclusive education*. In: 2024 Tenth International Conference on eDemocracy & eGovernment (ICEDEG), pp. 1–7.

[30] Lin, X., Chen, Z., & Liu, Y. (2024). *AI-driven personalization in inclusive online learning environments*. *Computers in Human Behavior*, 152, 107289.

[31] Wen, W., and Castek, J. (2020). *Equity, literacies, and learning in technology-rich makerspaces” in Handbook of research on integrating digital technology with literacy pedagogies*. eds. P. M. Sullivan, J. L. Lantz and B. A. Sullivan (Pennsylvania, US: IGI Global Scientific Publishing), 150–173.