# FROM REMOTE SENSING TO AI: EVALUATING THE APPLICATIONS, ADEQUACY, AND BARRIERS OF TECHNOLOGY IN THE GLOBAL ENVIRONMENTAL RESEARCH

Md Mahamudur Rahman<sup>1</sup>, Faria Akter<sup>2</sup>, Dr. Nilima Islam<sup>3</sup>,

<sup>1</sup>Department of Geography & Environment, University of Dhaka, Bangladesh.

<sup>1</sup>Dept. of Environmental Science, <sup>1</sup>Department of Architecture, State University of Bangladesh

<sup>1</sup>Bangladesh Institute of Governance & Management

<sup>2</sup>Department of Electrical and Electronics Engineering,

<sup>2</sup>Hajee Mohammad Danesh Science & Technology University

<sup>2</sup>Department of Environmental Science, State University of Bangladesh

<sup>3</sup>Lecturer, US Bangla Medical College and Hospital, Dhaka.

<sup>3</sup>Medical College for Women and Hospital, Uttara, Dhaka.

faria46a@gmail.com, nishatn601@gmail.com

Corresponding Author: archmahamud@gmial.com,

Received on 06 October 2025 Received in revised from 10 October 2025 Accepted 12 October 2025

#### **ABSTRACT**

Technological innovation plays a pivotal role in tackling multifaceted global environmental issues such as climate change, biodiversity degradation, pollution, deforestation, and disaster management. This study provides a comprehensive analysis of the role, efficacy, and constraints of advanced technological tools within environmental research frameworks. It categorizes and critically evaluates instrumental technologies, including remote sensing, geographic information systems (GIS), artificial intelligence (AI), the Internet of Things (IoT), and big data analytics, assessing their applications in environmental monitoring, modeling, and decision-making processes. The study delves into the technical, financial, institutional, and socio-political barriers that obstruct the widespread adoption and optimal effectiveness of these technologies. Through an examination of global case studies, it identifies best practices in technology-facilitated environmental monitoring and predictive modeling. Findings reveal that while these tools enhance the accuracy, timeliness, and scalability of environmental assessments, their impact is often curtailed by disparities in access, prohibitive costs, and institutional resistance. The study culminates in strategic recommendations to enhance inclusive access, strengthen capacity building, promote interdisciplinary collaboration, and establish ethical and normative frameworks governing technology deployment. These insights serve as a roadmap for augmenting the integration of technology in sustainable environmental research and informed policy development, particularly in resource-constrained and climatesensitive regions.

**Keywords:** Remote Sensing, AI Technology, Global Environment, Environmental Research ,AI Applications, Adequacy of AI, Barriers of AI

#### **I.INTRODUCTION**

The conceptual roots of artificial intelligence trace back to ancient myths and philosophical speculation about artificial beings endowed with human-like cognition. However, the scientific foundation of AI emerged in the mid-20th century, catalyzed by Alan Turing's seminal question, "Can machines think?" and the subsequent formulation of the Turing Test a benchmark for evaluating machine intelligence. The discipline was formally established at the 1956 Dartmouth Conference, where the term "artificial intelligence" was officially coined, marking the beginning of AI as a distinct field of research.

Early investigations centered on symbolic reasoning, artificial neurons, and adaptive learning

programs, reflecting the optimism of the era. Influential figures such as John von Neumann and Norbert Wiener contributed foundational ideas in cybernetics and feedback systems, shaping the theoretical underpinnings of intelligent behavior in machines. During this initial phase, researchers believed that human-level cognition was within reach, attracting substantial academic interest and government funding.

However, the limitations of early computational models soon became apparent. AI systems struggled to manage linguistic ambiguity, contextual understanding, and real-world complexity. The gap between expectations and technical feasibility led to a period of disillusionment and funding decline commonly referred to as the first AI Winter.



there was a resurgence through of expert systems, rule-based development architecture designed to emulate domain-specific human expertise in sectors such as medicine, engineering, and finance. These systems demonstrated notable success within constrained problem domains and spurred the first wave of commercial AI adoption. Yet, their inability to generalize beyond pre-programmed knowledge, combined with the escalating costs of maintenance and scaling, exposed fundamental weaknesses.

After that, the second AI Winter ensued as enthusiasm waned once again. The rigidity of symbolic approaches and the absence of genuine learning mechanisms limited further progress. Nonetheless, this period laid the groundwork for later breakthroughs. The confluence of increased computational power, massive data availability, and advances in neural networks and deep learning algorithms in the 21st century catalyzed AI's renaissance, transforming it into a dynamic, datadriven discipline. Today, AI stands as a central pillar of scientific innovation, driving

transformative change across virtually every domain from autonomous systems and precision medicine to climate modelling and cognitive computing.

From the 2000s onward, AI entered a new phase driven by greater computing power, large datasets, and advanced algorithms. Neural networks, revived through deep learning, enabled systems to learn directly from data, shifting AI from symbolic to data-driven approaches. A group of researchers have highlighted this transformation showcased the potential of machine learning. In the 2020s, AI has become deeply embedded in daily life, powering tools from voice assistants to autonomous vehicles and medical diagnostics. A defining shift is the emergence of large foundation models, such as ChatGPT and PaLM, which operate at a massive scale and demonstrate versatility across language, coding, and creative tasks. Far from being a buzzword, AI now shapes economies and societies, while raising pressing challenges around ethics, security, sustainability, and alignment with human values.

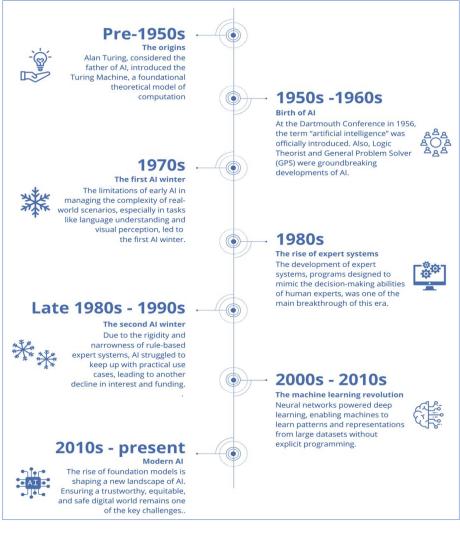



Fig. 01: Timeline of AI, Swiss Cyber Institute[1].



## International Journal of Trendy Research in Engineering and Technology Volume 9 Issue 6 December 2025



ISSN No. 2582-0958

To make the research successful, an attempt has been made to find answers to some basic questions, which are given below:

- What major technological tools are used in global environmental research, and how are they applied?
- To what extent do these technologies effectively address challenges like climate change, deforestation, biodiversity loss, pollution, and disaster management?
- What technical, financial, institutional, and socio-political barriers hinder the use of technology in environmental research worldwide?
- What strategies and recommendations can strengthen the role of technology in future environmental research and sustainable decision-making?

The Conceptualization of this study is that technology-enabled environmental encompasses the systematic deployment of advanced digital and analytical tools, including remote sensing, geographic information systems, artificial intelligence, the Internet of Things (IoT), and big data analytics. These tools are utilized to understand, monitor, and address pressing global environmental challenges. This conceptual framework positions practical applications of these technologies, such as climate modeling, river replenishment, and deforestation monitoring, as critical mediators between environmental issues and evidence-based decision-making. The efficacy and adequacy of this methodology are contingent upon the technology's capacity to produce accurate, timely, and actionable insights. However, this potential is often constrained by a range of barriers, including technological, economic, institutional, and socio-political factors that impede both the adoption and effectiveness of these solutions.

The **Broader Objective** of this study is to evaluate the role of technologies in global environmental research, focusing on their applications, adequacy, and the barriers hindering their integration.

We have some **Specific Objectives** that are provided below:

- 1. To identify and categories the major technological tools applied in environmental research.
- To assess the adequacy and effectiveness of these technologies in addressing key environmental challenges such as climate change, biodiversity loss, pollution, and natural resource management.

- 3. To analyses the technical, financial, institutional, and socio-political barriers that limit the widespread adoption of technology-assisted environmental research.
- 4. To examine global case studies where technological integration has successfully contributed to environmental monitoring, prediction, and decision-making.
- 5. To propose strategic recommendations for overcoming existing challenges and enhancing the role of technology in future environmental research and policymaking.

The justification for this study stems from the escalating global dependence on technological solutions to address environmental crises. Although innovations such as satellite imagery, AI-driven climate modelling, and IoT-based pollution sensors are transforming environmental science, their efficacy is constrained by issues of equitable access, prohibitive costs, and institutional impediments. These challenges raise significant questions regarding the adequacy and inclusiveness of current technological applications. This study seeks to bridge a critical knowledge gap by undertaking a systematic review of the global applications of technology in environmental research, evaluating their inherent limitations, and identifying best practices. The findings will provide crucial insights for policymakers, researchers, and environmental practitioners, particularly on how to scale and adapt technological solutions in resourceconstrained regions. Given the transboundary nature of environmental challenges, this assessment of technological adequacy and associated barriers inform collaborative strategies sustainability in both developed and developing nations.

We will face some limitations in preparing this paper. Despite following a systematic research process, several limitations surfaced during the study, which are outlined below:

- The investigation relies heavily on secondary sources, which could limit access to the latest or unpublished technological applications.
- Findings from case studies may not fully represent the diverse context involved.
- Given the rapid pace of technological change, some results could quickly become outdated as new tools develop.
- Limited availability of environmental data in politically sensitive or resource-constrained regions may restrict thorough analysis.
- While the research highlights global applications, feasibility, and barriers, it might not include a detailed technical review of each specific technology.



#### II.LITERATURE REVIEW

#### Using AI technology to combat water pollution:

Machine learning is increasingly applied in water pollution treatment, supporting tasks such as material screening, wastewater quality prediction, and pollutant mapping. For instance, applied CatBoost to evaluate the efficiency of resin in removing 43 types of PFASs, achieving an R<sup>2</sup> of 0.92 and identifying key factors such as the resin matrix, functional groups, and dosage. However, traditional ML struggles with the time-series nature

of wastewater plant data. To address this, Guo et al., [2] developed a bidirectional LSTM model using 970 days of operational data (over 1.4 million records), which accurately predicted real-time dissolved oxygen and effluent COD ( $R^2 > 0.9$ ). On a global scale, Random Forest employed 400,000+data points to map fluoride hazards in groundwater and estimate affected populations. Collectively, these studies show that ML, through its capacity for data mining and pattern recognition, offers powerful tools for advancing contaminated water treatment and environmental protection.

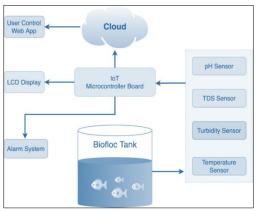



Fig. 02: Real-time Biofloc Aquaculture Monitoring System, Alam et al. [3].

#### Using AI technology to combat air pollution:

Rapid urbanization and industrial growth have intensified air pollution, particularly from particulate matter, NOx, SOx, and vehicle emissions, posing severe health risks. While emission reduction is important, real-time monitoring and advanced forecasting are essential for effective urban air quality management. Artificial Intelligence offers transformative tools

through predictive analytics, sensor networks, and satellite data integration, enabling improved source identification and targeted interventions. However, challenges of data quality, fairness, and equity must be addressed to ensure inclusive benefits, Maurya et al., [4]. This study examines the operational role of AI in urban air quality management, highlighting its potential to support sustainable, healthier, and greener cities.



Fig. 03: IoT-based urban air pollution monitoring system, Dang et al. [5].

#### Using AI technology to combat soil pollution:

Soil, "the soul of infinite lives," serves as the essential medium for plant growth by providing nutrients, water, aeration, and temperature regulation. Anthropogenic activities such as urbanization, deforestation, mining, etc., have accelerated soil degradation, with soil pollution

being a major concern. Soil contamination not only reduces fertility and crop productivity but also poses serious risks to human health. Various remediation techniques have been explored, Kalita [6], including heating, though excessive temperatures can disrupt soil microbial populations and fertility. Recent studies highlight the potential of Artificial Intelligence in soil



pollution management. AI tools can optimize fertilizer and pesticide application by determining precise dosages for crops and identifying highly contaminated areas, offering cost-effective and accurate solutions. Although still emerging, AI presents significant opportunities for advancing sustainable soil remediation practices.

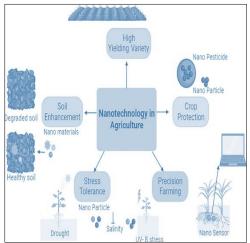



Fig. 04: Using AI technology to monitor Soil Pollution, Anand et al. [7].

#### Using AI technology to combat noise pollution:

Traffic noise pollution has become a major environmental concern in urban areas worldwide, with significant impacts on public health and quality of life. Road traffic, given its widespread infrastructure compared to air and rail transit, is the primary source of such noise. Traditional analytical models estimate noise levels based on variables such as traffic volume, speed, and road conditions;

however, machine learning and AI-based models have demonstrated superior accuracy due to their adaptive capacity and ability to capture non-linear dynamics. Particularly in regions with diverse traffic compositions, Ahmad Azlan, et al.,[8], AI offers a robust alternative to conventional empirical models. The rapid growth of AI applications thus presents new opportunities for improving urban noise prediction, management, and sustainable transport planning.

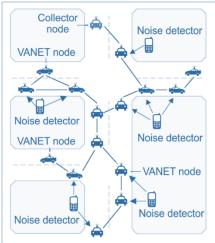



Fig. 05: Noise pollution monitoring using a VANET network, Radu et al. [9].

#### Environmental monitoring using AI technology:

Environmental monitoring is central to risk management and mitigation, encompassing diverse domains such as water, air, soil, biodiversity, forests, coral reefs, wildlife, and vegetation. Recent advances in sensor technologies, including satellites, drones, LiDAR, field surveys, citizen science, and historical datasets, have led to a rapid expansion of environmental data. This "data explosion" poses challenges in integration,

management, and analysis. Artificial Intelligence offers, significant potential by automating data processing, synthesizing multi-source inputs, enabling rapid analysis, generating real-time insights, and forecasting future conditions[10]. Consequently, AI is increasingly applied across all stages of environmental monitoring from data collection to decision-making, proving particularly valuable in regions with limited human and technical resources.





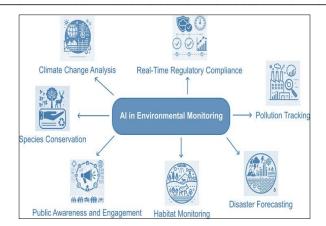



Fig. 06: Advancing Environmental Monitoring through AI: Applications of R and Python, K. Hackenberger, et al., 2025 [11]

### Use of Artificial Intelligence in Climate Change Evaluations:

Artificial Intelligence holds significant promise for enhancing the quality and efficiency of program evaluations, particularly in the context of climate change. Recognizing this potential, the Adaptation Fund, Climate Investment Funds, Global Environment Facility, and Green Climate Fund jointly commissioned a scoping study to assess the benefits, opportunities, and risks of AI applications in evaluation. With the rapid growth of data from

mobile technologies, the Internet and advanced monitoring systems, governments are increasingly shifting toward evidence-based, data-driven decision-making [12]. Given AI's capacity to process large, complex datasets, its relevance to climate-related evaluations is particularly strong, where interventions are often multidimensional and data-intensive. For climate finance institutions, effective evaluation is critical to ensuring the impact of investments, making the exploration of an AI-driven evaluation approach both timely and strategic.

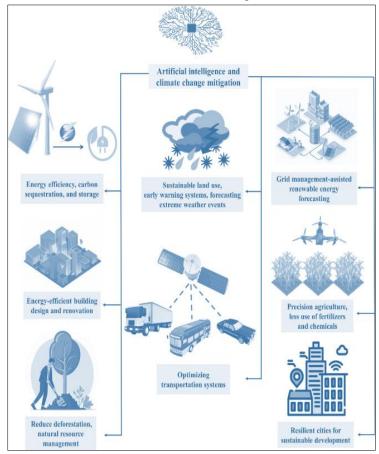



Fig.07: Artificial intelligence-based solutions for climate change, Chen et al., [13].





#### III. RESEARCH METHODOLOGY

This research methodology includes a systematic approach to examine technological application,

adequacy, and barriers in global environmental research. The methodology for producing this paper is illustrated in Figure 08.

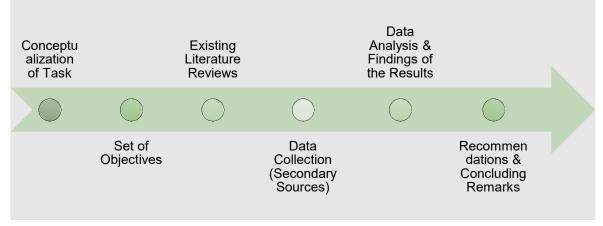



Figure 08: Methodology of preparing the paper

**Study Types:** In this research endeavor, we will systematically gather data from a diverse range of secondary sources. Utilizing various analytical tools, we aim to meticulously examine this data to fulfill the specific objectives of this study.

**Data Collection:** The data collection process will involve a wide range of secondary sources, such as academic books, peer-reviewed articles, and trustworthy online resources. By adopting this thorough approach, we aim to gather a diverse and robust data set that will effectively support my research findings.

**Data Sorting:** Upon the completion of the data collection phase, the collected information will be systematically organized and securely stored in an allocated location. This organized methodology will facilitate effective data management and

retrieval processes, ultimately enhance the analysis phase, and contribute to the fulfillment of the study's objectives.

**Data Analysis:** The collected data will be examined using a range of analytical tools and techniques specifically designed to interpret insights from secondary sources. This phase is critical for synthesizing information and generating conclusions that directly support the objectives of the study.

Recommendations & Concluding Remarks: This research paper includes a literature review and concluding remarks based on data analysis and a review of existing literature. The recommendations provided are intended to guide further studies in this field, which may lead to improved findings in the future.

#### **IV.FINDINGS**

#### List of AI Tools for Environmental Research

Table 01: Remote Sensing & Earth Observation AI Platforms

| S.L | Name of Tools                             | Applications                                                                             |
|-----|-------------------------------------------|------------------------------------------------------------------------------------------|
| 01  | Microsoft Planetary Computer              | Combines cloud infrastructure, open EO data, etc.                                        |
| 02  | AWS Open Data Registry (Earth datasets)   | Cloud-hosted EO datasets with AI-ready pipelines.                                        |
| 03  | IBM Environmental Intelligence<br>Suite   | AI-powered climate, air quality, and weather risk monitoring.                            |
| 04  | Descartes Labs Platform                   | Satellite imagery analytics + ML for agriculture, forestry, and climate.                 |
| 05  | CARTO                                     | Location intelligence with AI/ML integrations for environmental analytics.               |
| 06  | TerrSet (Clark Labs)                      | Includes Land Change Modeler (LCM) with ML for deforestation and land-cover projections. |
| 07  | Google Cloud AI Earth Engine<br>Connector | Integration of GEE datasets with Google AI/BigQuery ML.                                  |





Table 02: Open-Source Geospatial ML Toolkits

| S.L | Name of Tools                  | Applications                                                 |
|-----|--------------------------------|--------------------------------------------------------------|
| 01  | DeepForest                     | Python library for tree crown detection in aerial/satellite  |
| 01  | Deepirorest                    | imagery using deep learning.                                 |
| 02  | DeepLah (Google Pesegrah)      | A Semantic segmentation model is often applied to land cover |
| 02  | DeepLab (Google Research)      | mapping.                                                     |
| 03  | II Not (open implementations)  | Widely used CNN architecture for environmental image         |
| 03  | U-Net (open implementations)   | segmentation.                                                |
| 04  | LightGPM / VGP post            | Gradient boosting ML algorithms are widely applied in        |
| 04  | LightGBM / XGBoost             | environmental data modeling.                                 |
| 05  | EO-Learn                       | Open-source Python library for EO data processing and ML.    |
| 06  | GeoPandas + Shapely + Rasterio | Python stacks for geospatial preprocessing before AI/ML.     |
| 0.7 | LandTrendr (in GEE)            | ML-based algorithm for time-series land-cover change         |
| 07  |                                | detection.                                                   |

Table 03: AI for Climate, Weather & Air Quality

| S.L | Name of Tools                                       | Applications                                                     |
|-----|-----------------------------------------------------|------------------------------------------------------------------|
| 01  | Google Flood Forecasting Initiative                 | AI models predicting floods using satellite + hydrological data. |
| 02  | Nowcasting                                          | AI-based short-term rainfall prediction model.                   |
| 03  | AirQo AI Platform                                   | Africa-based AI system for urban air quality forecasting.        |
| 04  | Open Climate Data + AI (NASA<br>EarthData ML tools) | AI-assisted climate projection datasets.                         |
| 05  | Copernicus Climate Data Store<br>Toolbox            | ML-ready APIs for climate data analysis.                         |

Table 04: AI for Biodiversity, Conservation & Ecology

| S.L | Name of Tools                                                | Applications                                                                      |
|-----|--------------------------------------------------------------|-----------------------------------------------------------------------------------|
| 01  | Global Biodiversity Information<br>Facility (GBIF + ML APIs) | AI-ready species occurrence datasets.                                             |
| 02  | Wildbook (AI for Wildlife)                                   | Computer vision models for identifying individual animals (zebras, whales, etc.). |
| 03  | eBird + Merlin Bird ID (Cornell<br>Lab)                      | AI-powered bird call and image recognition.                                       |
| 04  | FishID (Marine AI)                                           | AI-based fish species recognition from underwater images/videos.                  |
| 05  | PASTIS-57 Dataset + Models                                   | Benchmark dataset + DL models for land cover classification.                      |
| 06  | EcoNet (Deep Learning Ecology Network)                       | Framework for integrating ecological data with DL models.                         |

Table 05: AI for Environmental Risk & Disaster Management

| S.L | Name of Tools                            | Applications                                                             |
|-----|------------------------------------------|--------------------------------------------------------------------------|
| 01  | Think Hazard! + AI layers                | Risk intelligence platform integrating ML for natural hazard assessment. |
| 02  | GRASS GIS + AI plugins                   | Open-source GIS with AI-based spatial modeling extensions.               |
| 03  | CLIMADA (Climate Adaptation Model)       | Python-based models use ML to simulate climate risks.                    |
| 04  | Risk Scape                               | Hazard impact modeling platform using AI/ML-based risk analytics.        |
| 05  | Deltares Delft-FEWS + AI<br>Integrations | Environmental forecasting system (floods, hydrology) with AI.            |







### Multicriteria Analysis of Technologies' Impacts and Barriers

The assessment examines the economic, social, technological, environmental, legal, and policy impacts that influence and pose barriers to environmental research. It also addresses critical issues such as climate change, disaster risk and

adaptation, Earth observation, and the use of advanced technologies like machine learning. The detailed analysis below highlights how these impacts interact, their impact on the effectiveness of research, and the barriers encountered when integrating these approaches into practical environmental management strategies

| .Analytical   | change, disaster risk and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|---------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Elements      | Impacts                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Barriers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Economic      | <ul> <li>AI increases research efficiency by reducing time and cost in data collection and analysis.</li> <li>It supports better resource management, leading to cost savings in energy, water, and waste systems.</li> <li>AI applications create new economic opportunities in green technology and environmental services.</li> <li>Automation may reduce traditional jobs but generate demand for skilled AI professionals.</li> <li>Improved environmental forecasting helps governments and industries minimize losses from disasters and pollution.</li> </ul> | <ul> <li>High initial investment is required for AI tools, data infrastructure, and computing facilities.</li> <li>Limited funding availability for environmental AI projects, especially in developing countries.</li> <li>Maintenance and operation costs of AI systems are often unsustainable for small institutions.</li> <li>Lack of skilled workforce increases dependence on expensive foreign expertise.</li> <li>Economic inequality widens as advanced economies benefit more from AI-based environmental innovation.</li> </ul> |
| Social        | <ul> <li>AI helps predict environmental changes and supports informed policymaking.</li> <li>AI visualizations and tools improve understanding of climate and pollution issues.</li> <li>Automation changes workforce needs, creating demand for AI skills but reducing traditional roles.</li> <li>Wealthier regions benefit more, widening the digital and data gap.</li> <li>"Black-box" models can reduce public confidence in AI-based findings.</li> </ul>                                                                                                      | <ul> <li>Limited AI literacy among researchers and policymakers.</li> <li>Insufficient or poor-quality local environmental data.</li> <li>Expensive technology and infrastructure requirements.</li> <li>Biased data or unclear accountability can mislead results.</li> <li>Unequal access to technology and the internet slows adoption.</li> </ul>                                                                                                                                                                                       |
| Technological | <ul> <li>AI improves accuracy and speed in environmental data analysis and prediction.</li> <li>It enhances real-time monitoring through remote sensing, IoT sensors, and automated systems.</li> <li>Advanced modeling tools help simulate complex environmental processes more efficiently.</li> <li>Integration of big data and AI enables a better understanding of global environmental patterns.</li> <li>Continuous innovation in AI technology drives progress in climate modeling and sustainability research.</li> </ul>                                    | <ul> <li>Lack of high-quality and standardized environmental data limits AI performance.</li> <li>Insufficient computing infrastructure and storage capacity hinder large-scale analysis.</li> <li>Interoperability issues make it difficult to integrate AI with existing environmental systems.</li> <li>Rapid technological change makes tools quickly outdated and hard to maintain.</li> <li>Cybersecurity risks and data vulnerability threaten reliability and trust in AI systems.</li> </ul>                                       |
| Environmental | <ul> <li>AI helps identify, map, and monitor species and habitats more accurately through remote sensing and image recognition.</li> <li>It supports early detection of ecosystem</li> </ul>                                                                                                                                                                                                                                                                                                                                                                          | <ul> <li>Limited field data and poor species records reduce AI model accuracy.</li> <li>Overreliance on AI predictions may overlook local ecological knowledge.</li> <li>Data bias toward well-studied regions</li> </ul>                                                                                                                                                                                                                                                                                                                   |





## International Journal of Trendy Research in Engineering and Technology Volume 9 Issue 6 December 2025

ISSN No. 2582-0958

|                                   | <ul> <li>degradation and biodiversity loss.</li> <li>AI-based predictive models assist in managing conservation areas and restoring ecosystems.</li> <li>Improved data analysis enables a better understanding of species interactions and ecological balance.</li> <li>AI enhances global biodiversity databases, supporting more effective conservation policies.</li> </ul>                                                                                                                                                                                                 | <ul> <li>and species skews conservation priorities.</li> <li>Technical errors in AI models can misclassify species or habitats, leading to poor decisions.</li> <li>Lack of collaboration between ecologists and AI experts slows practical application in biodiversity management.</li> </ul>                                                                                                                                                                                                     |
|-----------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Legal, Ethical &<br>Policy making | <ul> <li>AI supports evidence-based environmental policies through accurate data and predictive modeling.</li> <li>It improves transparency and accountability in policy decisions by providing data-driven insights.</li> <li>Ethical use of AI encourages fairness and environmental justice in decision-making.</li> <li>Legal frameworks can evolve to regulate data use, privacy, and AI applications in environmental sectors.</li> <li>AI promotes international collaboration by aligning environmental data and policy standards.</li> </ul>                          | <ul> <li>Absence of clear laws and regulations for AI use in environmental data collection and management.</li> <li>Unclear data ownership and intellectual property rights create legal conflicts.</li> <li>Ethical concerns arise from biased algorithms or misuse of environmental data.</li> <li>Lack of policy integration between technology and environmental governance.</li> <li>Weak enforcement and institutional capacity limit the safe and responsible use of AI.</li> </ul>         |
| Climate Change                    | <ul> <li>AI improves climate modeling and forecasting accuracy, helping predict temperature, rainfall, and extreme events.</li> <li>It supports early warning systems for floods, cyclones, and droughts, reducing disaster risks.</li> <li>AI assists in tracking greenhouse gas emissions and identifying high-risk pollution sources.</li> <li>Data-driven insights guide climate adaptation and mitigation strategies at local and global levels.</li> <li>AI promotes efficient use of renewable energy and helps monitor carbon sequestration projects.</li> </ul>       | <ul> <li>Limited long-term climate data and inconsistent global datasets reduce AI reliability.</li> <li>High computational power requirements make large-scale climate modeling costly.</li> <li>Uncertainty in AI predictions can mislead climate policy decisions.</li> <li>Lack of integration between climate scientists and AI developers slows innovation.</li> <li>In developing countries, poor digital infrastructure and funding restrict AI use in climate research.</li> </ul>        |
| Disaster Risk &<br>Adaptation     | <ul> <li>AI enhances early warning systems by predicting floods, cyclones, and landslides with greater accuracy.</li> <li>It improves real-time disaster monitoring and response through satellite and sensor data analysis.</li> <li>AI supports risk mapping and vulnerability assessment for better planning and adaptation strategies.</li> <li>Predictive analytics help optimize resource allocation during emergencies and recovery phases.</li> <li>AI-driven simulations assist policymakers in designing climateresilient infrastructure and communities.</li> </ul> | <ul> <li>Lack of reliable and high-resolution disaster data limits AI prediction accuracy.</li> <li>Poor integration between local disaster management systems and AI technologies.</li> <li>High cost of advanced monitoring equipment and computing resources.</li> <li>Limited technical expertise in interpreting AI-based disaster forecasts.</li> <li>Inadequate coordination between the government, research institutions, and technology providers delays adaptation measures.</li> </ul> |
| Earth Observation                 | AI enhances the processing and<br>interpretation of satellite and remote<br>sensing data.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Limited access to high-quality, up-to-<br>date satellite data in developing<br>regions.                                                                                                                                                                                                                                                                                                                                                                                                            |





## International Journal of Trendy Research in Engineering and Technology Volume 9 Issue 6 December 2025

ISSN No. 2582-0958

| <ul> <li>It improves the detection of land-use changes, deforestation, and urban expansion.</li> <li>AI supports real-time monitoring of air, water, and soil quality using multisensor data.</li> <li>Automated image classification helps track ecosystem and climate variations more efficiently.</li> <li>AI-driven Earth observation strengthens environmental planning and sustainable resource management.</li> <li>MI improves the prediction of environmental phenomena such as air pollution, water quality, and climate trends.</li> <li>It enables automated analysis of large and complex environmental datasets.</li> <li>MI helps identify patterns and correlations that are difficult for humans to detect.</li> <li>It supports optimization of resource management and sustainability strategies.</li> <li>ML facilitates real-time monitoring and early warning systems for environmental</li> <li>Integration of ML insights into practical policy or field applications is often challenging</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                  |                                                              |                                                             |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|--------------------------------------------------------------|-------------------------------------------------------------|
| expansion.  A I supports real-time monitoring of air, water, and soil quality using multisensor data.  Automated image classification helps track ecosystem and climate variations more efficiently.  A I-driven Earth observation strengthens environmental planning and sustainable resource management.  M I improves the prediction of environmental phenomena such as air pollution, water quality, and climate trends.  I t enables automated analysis of large and complex environmental datasets.  M I helps identify patterns and correlations that are difficult for humans to detect.  It supports real-time monitoring of air, water, and soil quality using multisensor data.  Lack of standardized data formats and interoperability between observation systems.  I lack of standardized data formats and interoperability between observation systems.  I lack of standardized data formats and interoperability between observation systems.  I lack of standardized data formats and interoperability between observation systems.  I lack of standardized data formats and interoperability between observation systems.  I lack of standardized data formats and interoperability between observation systems.  I lack of standardized data formats and interoperability between observation systems.  I lack of standardized data formats and interoperability between observation systems.  I lack of standardized data formats and interoperability between observation systems.  I lack of standardized data formats and interoperability based image analysis and remote sensing.  Dependence on foreign satellite infrastructure and data sources creates accessibility and sovereignty issues.  Limited availability of high-quality, labeled environmental datasets reduce ML effectiveness.  Models can inherit biases from incomplete or unrepresentative data.  High computational power and technical expertise in AI-based image analysis and remote sensing.  Limited availability of high-quality, labeled environmental datasets educe ML effectiveness.  Lack of transparticent sensing.  |                  |                                                              |                                                             |
| <ul> <li>All supports real-time monitoring of air, water, and soil quality using multisensor data.</li> <li>Automated image classification helps track ecosystem and climate variations more efficiently.</li> <li>Al-driven Earth observation strengthens environmental planning and sustainable resource management.</li> <li>ML improves the prediction of environmental phenomena such as air pollution, water quality, and climate trends.</li> <li>It enables automated analysis of large and complex environmental datasets.</li> <li>ML helps identify patterns and correlations that are difficult for humans to detect.</li> <li>It supports optimization of resource management and sustainability strategies.</li> <li>ML facilitates real-time monitoring and</li> <li>Lack of standardized data formats and interoperability between observation systems.</li> <li>Insufficient technical expertise in Albased image analysis and remote sensing.</li> <li>Dependence on foreign satellite infrastructure and data sources creates accessibility and sovereignty issues.</li> <li>Limited availability of high-quality, labeled environmental datasets reduce ML effectiveness.</li> <li>Models can inherit biases from incomplete or unrepresentative data.</li> <li>High computational power and technical expertise are required to develop and maintain ML models.</li> <li>Lack of transparency ("black box" problem) reduces trust in ML predictions.</li> <li>Integration of ML insights into practical policy or field applications is</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                  | changes, deforestation, and urban                            | requirements for processing large                           |
| water, and soil quality using multisensor data.  Automated image classification helps track ecosystem and climate variations more efficiently.  AI-driven Earth observation strengthens environmental planning and sustainable resource management.  MI improves the prediction of environmental plenomena such as air pollution, water quality, and climate trends.  It enables automated analysis of large and complex environmental datasets.  MI helps identify patterns and correlations that are difficult for humans to detect.  It supports optimization of resource management and sustainability strategies.  MI facilitates real-time monitoring and interoperability between observation systems.  Insufficient technical expertise in AI-based image analysis and remote sensing.  Limited availability of high-quality, labeled environmental datasets reduce ML effectiveness.  Models can inherit biases from incomplete or unrepresentative data.  High computational power and technical expertise in AI-based image analysis and remote sensing.  Limited availability of high-quality, labeled environmental datasets reduce ML effectiveness.  Models can inherit biases from incomplete or unrepresentative data.  High computational power and technical expertise in AI-based image analysis and remote sensing.  Limited availability of high-quality, labeled environmental datasets reduce ML effectiveness.  Models can inherit biases from incomplete or unrepresentative data.  High computational power and technical expertise in AI-based image analysis and remote sensing.  Limited availability of high-quality, labeled environmental datasets reduce ML effectiveness.  Limited availability of high-quality, labeled environmental datasets reduce ML effectiveness.  Lick of transparency ("black box" problem) reduces trust in ML predictions.  Integration of ML insights into practical policy or field applications is                                                                                                                                                            |                  | expansion.                                                   | datasets.                                                   |
| sensor data.  Automated image classification helps track ecosystem and climate variations more efficiently.  AI-driven Earth observation strengthens environmental planning and sustainable resource management.  MI improves the prediction of environmental phenomena such as air pollution, water quality, and climate trends.  It enables automated analysis of large and complex environmental datasets.  MI helps identify patterns and correlations that are difficult for humans to detect.  It supports optimization of resource management and sustainability strategies.  MI facilitates real-time monitoring and  systems.  Insufficient technical expertise in AI-based image analysis and remote sensing.  Dependence on foreign satellite infrastructure and data sources creates accessibility and sovereignty issues.  Limited availability of high-quality, labeled environmental datasets reduce ML effectiveness.  Models can inherit biases from incomplete or unrepresentative data.  High computational power and technical expertise in AI-based image analysis and remote sensing.  Dependence on foreign satellite infrastructure and data sources creates accessibility and sovereignty issues.  Limited availability of high-quality, labeled environmental datasets reduce ML effectiveness.  High computational power and technical expertise in AI-based image analysis and remote sensing.  Dependence on foreign satellite infrastructure and data sources creates accessibility and sovereignty issues.  Limited availability of high-quality, labeled environmental datasets reduce ML effectiveness.  High computational power and technical expertise in AI-based image analysis and remote sensing.  Limited availability of high-quality, labeled environmental datasets reduce ML effectiveness.  Limited availability of high-quality, labeled environmental datasets reduce ML effectiveness.  Limited availability of high-quality, labeled environmental datasets reduce ML effectiveness.  Limited availability of high-quality, labeled environmental datasets reduce ML effecti |                  | <ul> <li>AI supports real-time monitoring of air,</li> </ul> | <ul> <li>Lack of standardized data formats and</li> </ul>   |
| sensor data.  Automated image classification helps track ecosystem and climate variations more efficiently.  AI-driven Earth observation strengthens environmental planning and sustainable resource management.  MI improves the prediction of environmental phenomena such as air pollution, water quality, and climate trends.  It enables automated analysis of large and complex environmental datasets.  MI helps identify patterns and correlations that are difficult for humans to detect.  It supports optimization of resource management and sustainability strategies.  MI facilitates real-time monitoring and  systems.  Insufficient technical expertise in AI-based image analysis and remote sensing.  Dependence on foreign satellite infrastructure and data sources creates accessibility and sovereignty issues.  Limited availability of high-quality, labeled environmental datasets reduce ML effectiveness.  Models can inherit biases from incomplete or unrepresentative data.  High computational power and technical expertise in AI-based image analysis and remote sensing.  Dependence on foreign satellite infrastructure and data sources creates accessibility and sovereignty issues.  Limited availability of high-quality, labeled environmental datasets reduce ML effectiveness.  High computational power and technical expertise in AI-based image analysis and remote sensing.  Dependence on foreign satellite infrastructure and data sources creates accessibility and sovereignty issues.  Limited availability of high-quality, labeled environmental datasets reduce ML effectiveness.  High computational power and technical expertise in AI-based image analysis and remote sensing.  Limited availability of high-quality, labeled environmental datasets reduce ML effectiveness.  Limited availability of high-quality, labeled environmental datasets reduce ML effectiveness.  Limited availability of high-quality, labeled environmental datasets reduce ML effectiveness.  Limited availability of high-quality, labeled environmental datasets reduce ML effecti |                  | water, and soil quality using multi-                         | interoperability between observation                        |
| track ecosystem and climate variations more efficiently.  AI-driven Earth observation strengthens environmental planning and sustainable resource management.  ML improves the prediction of environmental phenomena such as air pollution, water quality, and climate trends.  It enables automated analysis of large and complex environmental datasets.  ML helps identify patterns and correlations that are difficult for humans to detect.  It supports optimization of resource management and sustainability strategies.  ML facilitates real-time monitoring and  based image analysis and remote sensing.  Dependence on foreign satellite infrastructure and data sources creates accessibility and sovereignty issues.  Limited availability of high-quality, labeled environmental datasets reduce ML effectiveness.  Models can inherit biases from incomplete or unrepresentative data.  High computational power and technical expertise are required to develop and maintain ML models.  Lack of transparency ("black box" problem) reduces trust in ML predictions.  Integration of ML insights into practical policy or field applications is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  | sensor data.                                                 | systems.                                                    |
| more efficiently.  AI-driven Earth observation strengthens environmental planning and sustainable resource management.  ML improves the prediction of environmental phenomena such as air pollution, water quality, and climate trends.  It enables automated analysis of large and complex environmental datasets.  ML helps identify patterns and correlations that are difficult for humans to detect.  It supports optimization of resource management and sustainability strategies.  ML facilitates real-time monitoring and  sensing.  Dependence on foreign satellite infrastructure and data sources creates accessibility and sovereignty issues.  Limited availability of high-quality, labeled environmental datasets reduce ML effectiveness.  ML effectiveness.  Models can inherit biases from incomplete or unrepresentative data.  High computational power and technical expertise are required to develop and maintain ML models.  Lack of transparency ("black box" problem) reduces trust in ML predictions.  Integration of ML insights into practical policy or field applications is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                  | <ul> <li>Automated image classification helps</li> </ul>     | <ul> <li>Insufficient technical expertise in AI-</li> </ul> |
| <ul> <li>AI-driven Earth observation strengthens environmental planning and sustainable resource management.</li> <li>ML improves the prediction of environmental phenomena such as air pollution, water quality, and climate trends.</li> <li>It enables automated analysis of large and complex environmental datasets.</li> <li>ML helps identify patterns and correlations that are difficult for humans to detect.</li> <li>It supports optimization of resource management and sustainability strategies.</li> <li>ML facilitates real-time monitoring and</li> <li>Dependence on foreign satellite infrastructure and data sources creates accessibility and sovereignty issues.</li> <li>Limited availability of high-quality, labeled environmental datasets reduce ML effectiveness.</li> <li>Models can inherit biases from incomplete or unrepresentative data.</li> <li>High computational power and technical expertise are required to develop and maintain ML models.</li> <li>Lack of transparency ("black box" problem) reduces trust in ML predictions.</li> <li>Integration of ML insights into practical policy or field applications is</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                  | track ecosystem and climate variations                       | based image analysis and remote                             |
| strengthens environmental planning and sustainable resource management.  ML improves the prediction of environmental phenomena such as air pollution, water quality, and climate trends.  It enables automated analysis of large and complex environmental datasets.  ML helps identify patterns and correlations that are difficult for humans to detect.  It supports optimization of resource management and sustainability strategies.  ML facilitates real-time monitoring and  infrastructure and data sources creates accessibility and sovereignty issues.  Limited availability of high-quality, labeled environmental datasets reduce ML effectiveness.  ML effectiveness.  ML effectiveness.  High computational power and technical expertise are required to develop and maintain ML models.  Lack of transparency ("black box" problem) reduces trust in ML predictions.  Integration of ML insights into practical policy or field applications is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                  |                                                              | sensing.                                                    |
| <ul> <li>and sustainable resource management.</li> <li>ML improves the prediction of environmental phenomena such as air pollution, water quality, and climate trends.</li> <li>It enables automated analysis of large and complex environmental datasets.</li> <li>ML helps identify patterns and correlations that are difficult for humans to detect.</li> <li>It supports optimization of resource management and sustainability strategies.</li> <li>ML facilitates real-time monitoring and</li> <li>Limited availability of high-quality, labeled environmental datasets reduce ML effectiveness.</li> <li>Models can inherit biases from incomplete or unrepresentative data.</li> <li>High computational power and technical expertise are required to develop and maintain ML models.</li> <li>Lack of transparency ("black box" problem) reduces trust in ML predictions.</li> <li>Integration of ML insights into practical policy or field applications is</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                  | <ul> <li>AI-driven Earth observation</li> </ul>              | <ul> <li>Dependence on foreign satellite</li> </ul>         |
| <ul> <li>ML improves the prediction of environmental phenomena such as air pollution, water quality, and climate trends.</li> <li>It enables automated analysis of large and complex environmental datasets.</li> <li>ML helps identify patterns and correlations that are difficult for humans to detect.</li> <li>It supports optimization of resource management and sustainability strategies.</li> <li>ML improves the prediction of environmental datasets are pollution, water quality, labeled environmental datasets reduce ML effectiveness.</li> <li>Models can inherit biases from incomplete or unrepresentative data.</li> <li>High computational power and technical expertise are required to develop and maintain ML models.</li> <li>Lack of transparency ("black box" problem) reduces trust in ML predictions.</li> <li>Integration of ML insights into practical policy or field applications is</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  | strengthens environmental planning                           | infrastructure and data sources creates                     |
| environmental phenomena such as air pollution, water quality, and climate trends.  It enables automated analysis of large and complex environmental datasets.  ML helps identify patterns and correlations that are difficult for humans to detect.  It supports optimization of resource management and sustainability strategies.  ML helps identify patterns and technical expertise are required to develop and maintain ML models.  Lack of transparency ("black box" problem) reduces trust in ML predictions.  Integration of ML insights into practical policy or field applications is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  | and sustainable resource management.                         | accessibility and sovereignty issues.                       |
| machine Learning  pollution, water quality, and climate trends.  It enables automated analysis of large and complex environmental datasets.  ML helps identify patterns and correlations that are difficult for humans to detect.  It supports optimization of resource management and sustainability strategies.  ML effectiveness.  Models can inherit biases from incomplete or unrepresentative data.  High computational power and technical expertise are required to develop and maintain ML models.  Lack of transparency ("black box" problem) reduces trust in ML predictions.  Integration of ML insights into practical policy or field applications is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                  | <ul> <li>ML improves the prediction of</li> </ul>            | <ul> <li>Limited availability of high-quality,</li> </ul>   |
| trends.  It enables automated analysis of large and complex environmental datasets.  ML helps identify patterns and correlations that are difficult for humans to detect.  It supports optimization of resource management and sustainability strategies.  Models can inherit biases from incomplete or unrepresentative data.  High computational power and technical expertise are required to develop and maintain ML models.  Lack of transparency ("black box" problem) reduces trust in ML predictions.  Integration of ML insights into practical policy or field applications is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                  | environmental phenomena such as air                          | labeled environmental datasets reduce                       |
| <ul> <li>It enables automated analysis of large and complex environmental datasets.</li> <li>ML helps identify patterns and correlations that are difficult for humans to detect.</li> <li>It supports optimization of resource management and sustainability strategies.</li> <li>ML facilitates real-time monitoring and</li> <li>incomplete or unrepresentative data.</li> <li>High computational power and technical expertise are required to develop and maintain ML models.</li> <li>Lack of transparency ("black box" problem) reduces trust in ML predictions.</li> <li>Integration of ML insights into practical policy or field applications is</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                  | pollution, water quality, and climate                        | ML effectiveness.                                           |
| <ul> <li>and complex environmental datasets.</li> <li>ML helps identify patterns and correlations that are difficult for humans to detect.</li> <li>It supports optimization of resource management and sustainability strategies.</li> <li>ML facilitates real-time monitoring and</li> <li>High computational power and technical expertise are required to develop and maintain ML models.</li> <li>Lack of transparency ("black box" problem) reduces trust in ML predictions.</li> <li>Integration of ML insights into practical policy or field applications is</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  | trends.                                                      | <ul> <li>Models can inherit biases from</li> </ul>          |
| <ul> <li>and complex environmental datasets.</li> <li>ML helps identify patterns and correlations that are difficult for humans to detect.</li> <li>It supports optimization of resource management and sustainability strategies.</li> <li>ML facilitates real-time monitoring and</li> <li>High computational power and technical expertise are required to develop and maintain ML models.</li> <li>Lack of transparency ("black box" problem) reduces trust in ML predictions.</li> <li>Integration of ML insights into practical policy or field applications is</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  | <ul> <li>It enables automated analysis of large</li> </ul>   | incomplete or unrepresentative data.                        |
| <ul> <li>Machine Learning</li> <li>ML helps identify patterns and correlations that are difficult for humans to detect.</li> <li>It supports optimization of resource management and sustainability strategies.</li> <li>ML facilitates real-time monitoring and</li> <li>technical expertise are required to develop and maintain ML models.</li> <li>Lack of transparency ("black box" problem) reduces trust in ML predictions.</li> <li>Integration of ML insights into practical policy or field applications is</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  | and complex environmental datasets.                          | <ul> <li>High computational power and</li> </ul>            |
| <ul> <li>Machine Learning</li> <li>correlations that are difficult for humans to detect.</li> <li>It supports optimization of resource management and sustainability strategies.</li> <li>ML facilitates real-time monitoring and</li> <li>develop and maintain ML models.</li> <li>Lack of transparency ("black box" problem) reduces trust in ML predictions.</li> <li>Integration of ML insights into practical policy or field applications is</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                  |                                                              |                                                             |
| <ul> <li>humans to detect.</li> <li>It supports optimization of resource management and sustainability strategies.</li> <li>ML facilitates real-time monitoring and</li> <li>Lack of transparency ("black box" problem) reduces trust in ML predictions.</li> <li>Integration of ML insights into practical policy or field applications is</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Machine Learning |                                                              |                                                             |
| <ul> <li>It supports optimization of resource management and sustainability strategies.</li> <li>ML facilitates real-time monitoring and</li> <li>problem) reduces trust in ML predictions.</li> <li>Integration of ML insights into practical policy or field applications is</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                  | humans to detect.                                            |                                                             |
| management and sustainability strategies.  ML facilitates real-time monitoring and predictions.  Integration of ML insights into practical policy or field applications is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                  | ■ It supports optimization of resource                       |                                                             |
| strategies.  • ML facilitates real-time monitoring and  • Integration of ML insights into practical policy or field applications is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                  |                                                              | - '                                                         |
| <ul> <li>ML facilitates real-time monitoring and practical policy or field applications is</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                  |                                                              |                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                                                              |                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  | early warning systems for environmental                      | often challenging.                                          |
| hazards.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                  |                                                              |                                                             |

#### Adequacy and Effectiveness of Technologies:

The adequacy and effectiveness of technology have greatly enhanced the accuracy, speed, and scale of environmental research. The integration of AI, IoT,

and remote sensing has improved predictive capabilities and allows for real-time decision-making. Below is an overview of their adequacy, effectiveness, and key limitations.

Table 06: Adequacy and Effectiveness of Technologies in Climate Change

| Technologies Used                                  | Adequacy                         | Effectiveness                      |
|----------------------------------------------------|----------------------------------|------------------------------------|
| <ul> <li>Remote sensing,</li> </ul>                | These technologies provide real- | High for predictive modeling,      |
| • climate models,                                  | time and high-resolution data,   | scenario analysis, and policy      |
| <ul> <li>AI-based predictive analytics,</li> </ul> | enabling researchers to track    | guidance. However, effectiveness   |
| • IoT sensors for monitoring-                      | climate trends, extreme weather  | can be limited in regions with     |
| o temperature                                      | events, and emissions patterns   | insufficient observational data or |
| o precipitation                                    | effectively.                     | low technological infrastructure.  |
| o greenhouse gas                                   |                                  |                                    |

Table 07: Adequacy and Effectiveness of Technologies in Biodiversity Loss

| 1 1                           | 8                                    | 3                                   |
|-------------------------------|--------------------------------------|-------------------------------------|
| <b>Technologies Used</b>      | Adequacy                             | Effectiveness                       |
| • GIS mapping,                | Adequate for mapping species         | Effective for early warning systems |
| Drone-based habitat           | distribution, habitat fragmentation, | and conservation planning.          |
| monitoring,                   | and monitoring population trends.    | Limitations include high costs, the |
| • Camera traps,               | AI and eDNA enhance the              | need for expert interpretation, and |
| • Environmental DNA (eDNA)    | detection of rare and elusive        | incomplete coverage in remote       |
| sampling,                     | species.                             | ecosystems.                         |
| • AI for species recognition. |                                      |                                     |

Table 08: Adequacy and Effectiveness of Technologies in Pollution (Air, Water, Soil)

| Technologies Used                                  | Adequacy                           | Effectiveness                       |
|----------------------------------------------------|------------------------------------|-------------------------------------|
| <ul> <li>IoT air and water quality</li> </ul>      | Sensors and ML models are          | Effective in identifying pollution  |
| sensors,                                           | adequate for continuous monitoring | sources, supporting mitigation      |
| • Remote sensing of pollutants                     | and prediction of pollution        | strategies, and tracking regulatory |
| <ul> <li>Machine learning for pollutant</li> </ul> | hotspots. Remote sensing           | compliance. Effectiveness depends   |
| dispersion modeling                                | complements ground-based           | on network density, calibration,    |
| Wastewater treatment technologies                  | measurements.                      | and maintenance of instruments.     |
| Bioremediation monitoring tools                    |                                    |                                     |



Table 09: Adequacy and Effectiveness of Technologies in Natural Resource Management

| Technologies Used                      | Adequacy                            | Effectiveness                       |
|----------------------------------------|-------------------------------------|-------------------------------------|
| Satellite imagery,                     | Highly adequate for monitoring      | Effective for optimizing resource   |
| • GIS,                                 | forests, water bodies, agricultural | use, planning sustainable           |
| AI-based land use and water            | lands, and mineral resources over   | harvesting, and reducing            |
| resource modeling,                     | large spatial scales.               | environmental degradation.          |
| Precision agriculture                  |                                     | Limitations include data gaps, high |
| Renewable energy monitoring            |                                     | implementation costs, and           |
| tools.                                 |                                     | technical capacity needs in         |
| 11 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 |                                     | developing regions.                 |

#### V.RECOMMENDATIONS

According to the case study and findings of this research paper, the following strategic recommendations are proposed to strengthen the effectiveness, inclusiveness, and sustainability of technological integration in global environmental research:

## ✓ Promote Equitable Technological Access and Capacity Building

Governments, international agencies, and research institutions should promote equitable access to advanced technologies, such as remote sensing, AI analytics, and IoT systems in developing regions. Institutionalized capacity-building programs in data literacy, technical proficiency, and environmental modeling are essential to empower local researchers and ensure sustainable technology utilization.

#### ✓ Strengthening Interdisciplinary and Transboundary Collaboration

Given the global nature of environmental challenges, stronger collaborative networks among universities, research institutions, and government agencies are essential. Developing open-access data repositories and cross-border research initiatives will facilitate knowledge sharing, optimize resources, and minimize duplication of efforts.

### ✓ Ensure Technological Adequacy through Continuous Evaluation

Regular evaluation frameworks should be established to assess the adequacy, accuracy, and ethical implications of emerging technologies in environmental monitoring and modeling. The performance of machine

learning, big data analytics, and Earth observation tools must be continuously validated against real-world conditions to ensure their reliability in tackling environmental degradation, pollution, and climate risks.

## ✓ Enhance Institutional and Policy Frameworks

Policymakers should embed technology-driven environmental monitoring within national management systems and climate action frameworks. Clear guidelines on data governance, ethical AI use, and inter-agency data sharing are essential to reduce institutional fragmentation and improve decision-making efficiency.

## ✓ Encourage Financial Innovation and Investment in Green Technologies

Governments and development partners should design financial mechanisms (e.g., technology grants, green innovation funds, and public-private partnerships) to lower the financial barriers of adopting advanced technologies. Incentivizing startups and research groups that develop low-cost, scalable, and locally adaptive technologies will promote sustainable innovation in environmental research.

#### ✓ Integrate Indigenous Knowledge with Technological Systems

Integrating local and indigenous ecological knowledge into data-driven research frameworks can enhance the contextual relevance and social acceptance of technology-based interventions. Hybrid approaches that combine traditional environmental insights with digital tools will promote more inclusive and sustainable outcomes.



www.trendytechjournals.com

## ✓ Develop Global Standards for Ethical and Responsible Technology Use

International organizations should jointly develop global standards and protocols for data ethics, privacy, and environmental technology deployment. Promoting transparency and accountability in AI-driven decision systems is vital to building public trust and preventing technological misuse.

## ✓ Foster Adaptive Research and Innovation Ecosystems

Research institutions should implement adaptive frameworks that enable the rapid integration of emerging technologies and methodologies. Strengthening innovative ecosystems through interdisciplinary hubs and living laboratories will foster experimentation, collaboration, and applied learning in environmental research.

#### ✓ Prioritize Technology for Climate Change Mitigation and Adaptation

Prioritize advanced tools like predictive climate models, AI-driven carbon monitoring, and satellite-based disaster forecasting to enhance global and regional adaptation. Expand technology-enabled early warning systems to improve disaster preparedness in climate-vulnerable regions.

#### ✓ Promote Global Policy Integration for Sustainable Technological Transition

International environmental agreements should include technology transfer provisions to foster mutual learning and equitable research benefits. Aligning global climate and biodiversity goals with technological innovation ensures science and policy advance together for sustainable stewardship.

#### **VI.CONCLUSION**

The effective integration of advanced technologies, including remote sensing, artificial intelligence analytics, and Internet of Things (IoT) systems, into environmental research is crucial to addressing complex global challenges such as climate change, pollution, biodiversity loss, and management. Ensuring equitable access to these technologies, developing local technical capacities, and building collaborative networks are essential to maximize their benefits. Continuous assessment of technological adequacy, ethical implications, and practical effectiveness is required to maintain reliability and social trust. Establishing clear policy frameworks, financial support mechanisms, and the

inclusion of indigenous knowledge significantly the relevance, inclusiveness, sustainability of technology-driven interventions. By adopting adaptive research methodologies, strengthening innovative ecosystems, and setting global standards for responsible technology use, the environmental research community significantly improve monitoring, prediction, and decision-making processes. Collectively, these initiatives will facilitate the development of more informed, equitable, and effective strategies for global environmental sustainability.

#### **REFERENCES**

- [1].Swiss Cyber Institute: 2025 https://swisscyberinstitute.com/blog/historyartificial-intelligence/#The origins pre-1950s
- [2]. Guo, Z., Huang, L., Yan, J., Zhang, H., Jia, X., Li, M., & Li, H. (2025). Artificial intelligence technology in environmental research and health: Development and prospects. *Environment International*, 203, 109788. https://doi.org/10.1016/j.envint.2025.109788
- [3].Alam, T.J., Hayder, A.A.S.B., Apu, A.F., Banna, M.H.A., Rahman, M.S. (2023). IoT Based Biofloc Aquaculture Monitoring System. In: Kaiser, M.S., Waheed, S., Bandyopadhyay, A., Mahmud, M., Ray, K. (eds) Proceedings of the Fourth International Conference on Trends in Computational and Cognitive Engineering. Lecture Notes in Networks and Systems, vol 618. Springer, Singapore. https://doi.org/10.1007/978-981-19-9483-8 9
- [4].Maurya, S. P., Yadav, A. K., & Singh, R. (2022). Modeling and Simulation of Environmental Systems. *Modeling and Simulation of Environmental* Systems: A Computation Approach (1st ed.). CRC Press. https://doi.org/10.1201/9781003203445
- [5].Dang, Wei & Kim, Soobong & Park, SungJun & Xu, Wenyan. (2024). The impact of economic and IoT technologies on air pollution: an AI-based simulation equation model using support vector machines. Soft Computing. 28. 1-21. https://doi.org/10.1007/s00500-023-09622-7





- [6].Kalita, P. (2025). Remediation of Soil Pollution and the Use of Artificial Intelligence. 8(2), 6–8.
- [7].Anand Raj Dhanapal, Muthu Thiruvengadam, Jayavarshini Vairavanathan, Baskar Venkidasamy, Maheswaran Easwaran, and Mansour Ghorbanpour. Nanotechnology Approaches for the Remediation of Agricultural Polluted Soils, *ACSOmega* **2024** *9* (12), 13522-13533. DOI: 10.1021/acsomega.3c09776-
- [8].Azlan Ahmad, Rosika Armiyanti Maharani, Z. S. I. (2025). Artificial Intelligence in Urban Traffic Noise Prediction: A Systematic Review. *The International Journal of Research and Innovation in Social Science (IJRISS)*, *VII*(2454–6186), 1175–1189. https://doi.org/10.47772/IJRISS
- [9].Radu, D., Avram, C., Aştilean, A., Parrein, B., & Yi, J. (2012). Acoustic noise pollution monitoring in an urban environment using a VANET network. 2012 IEEE International Conference on Automation, Quality and Testing, Robotics, AQTR 2012 Proceedings, May, 244–248. https://doi.org/10.1109/AQTR.2012.6237711
- [10].Orenstein, M. (2025). (2025). USING AI TO ASSESS AND MANAGE ENVIRONMENTAL RISK Written by Marla Orenstein Top 6 takeaways about AI and environment risk management. Lloyd's Register Foundation Institute for the Public Understanding of Risk (IPUR), June.
- [11].K. Hackenberger, B., Djerdj, T., & K. Hackenberger, D. (2025). Advancing Environmental Monitoring through AI: Applications of R and Python. IntechOpen. doi: 10.5772/intechopen.1007683
- [12].Saklani, N., & Bade, K. (2024). Footprints of Artificial Intelligence in Climate Change. International Journal for Research in Applied Science & Engineering Technology (IJRASET), 12-4 4972-75
- [13].Lin Chen, Zhonghao Chen, Yubing Zhang, Yunfei Liu, Ahmed I. Osman, Mohamed Farghali, Jianmin Hua, Ahmed Al-Fatesh, Ikko Ihara, David W. Rooney & Pow-Seng Yap. (2023) Artificial intelligence-based solutions for climate change: a review. *Environ Chem Lett* **21**, 2525–2557. https://doi.org/10.1007/s10311-023-01617-y

