AGILE MANUFACTURING IN POWERTRAIN PRODUCTION FOR ELECTRIC VEHICLES (EVS)

1Ms. Chaitra V, 2Prof. Rohith M N

1Postgraduate Student, 2Assistant Professor, Department of Electronics and Communication Engineering
Sri Jayachamarajendra College of Engineering, JSS Science and Technology University, JSS Technical Institutions
Campus, Mysuru-570006

Corresponding Author: chaitra123kumar@gmail.com

Received 05 May 2024 Accepted 14 May 2024

ABSTRACT

The automotive industry is undergoing a paradigm shift with the widespread adoption of electric vehicles (EV’s) to address environmental concerns and reduce dependence on fossil fuels. As EV technology continues to evolve, manufacturers face new challenges in producing efficient, reliable, and cost-effective powertrains—the core components responsible for converting electrical energy into motion. In this paper, agile manufacturing principles offer a promising approach to address the dynamic requirements of powertrain production in EV-based car companies. Agile manufacturing is a flexible and adaptive philosophy that emphasizes rapid response to changing market demands, customer preferences, and technological advancements. By leveraging agile principles, EV manufacturers can optimize their powertrain production processes to achieve higher efficiency, lower costs, and faster time-to-market. In this paper, the waterfall cycle model is utilized which is been alluded to and carried out on five companies C1-C5, and the progressive outcomes is portrayed. This abstract explores the application of agile manufacturing in the manufacturing of powertrains for EV-based car companies.

Keywords—Agile Manufacturing, Powertrain Production, Electric Vehicles, Manufacturing Efficiency, Production Flexibility, Production Optimization, Lean Manufacturing, Supply Chain Management, Process Innovation

I. INTRODUCTION

The automotive industry is experiencing a monumental transformation as the world increasingly prioritizes sustainable transportation solutions. This shift is underscored by concerns over climate change, air pollution, and energy sustainability, prompting a rapid uptake of electric vehicles (EV’s) as a viable alternative to traditional internal combustion engine (ICE) vehicles. At the heart of this transition lie the powertrains, intricate systems responsible for converting electrical energy from batteries into mechanical motion to propel vehicles forward. As EV technology progresses, car manufacturers are faced with the challenge of efficiently producing powertrains to meet the escalating demand for electric mobility. Traditionally, automotive manufacturing has been characterized by large-scale production systems tailored for mass-producing standardized vehicles. However, the shift to EV’s demands a fundamental reassessment of manufacturing strategies to accommodate the unique demands of electric powertrains. In this paper we introduce how agile manufacturing emerges as a promising approach to tackle these challenges, offering flexibility, responsiveness, and efficiency in production processes.

Now Agile manufacturing departs from traditional mass production models by prioritizing flexibility, adaptability, and swift response to market changes. Stemming from agile software development methodologies, agile manufacturing principles have found application across diverse industries, including aerospace, electronics and consumer goods. In the automotive sector, agile manufacturing gains traction as manufacturer seek to streamline production, reduce
Central to agile manufacturing is the concept of modularity, which involves breaking down production processes into smaller, interconnected modules or units. These can be readily reconfigured or repurposed to accommodate different products or variations, allowing for quick adjustments in production volumes, product specifications, and new model introductions without significant retooling or downtime. This modular approach empowers manufacturers to achieve greater flexibility and responsiveness to meet evolving customer demands.

The production of EV powertrains presents distinct challenges compared to traditional ICE vehicles. While ICE powertrains compromise hundreds of mechanical components, EV powertrains boast fewer moving parts and rely heavily on sophisticated electronics and battery systems. This shift to electrification necessitates investments in new manufacturing technologies, processes, and supply chain capabilities to ensure efficient and cost-effective production.

An overarching challenge lies in integrating advanced battery technologies into the manufacturing process. Lithium-ion batteries, predominant in EV’s, demand specialized manufacturing facilities and processes to ensure quality, safety, and reliability. Additionally, sourcing battery cells and materials poses supply chain hurdles, exacerbated by global demand for electric vehicle batteries.

Moreover, the rapid pace of technological innovation in EV powertrains demands agile manufacturing systems. Traditional approaches, characterized by long lead times and fixed production capacities, may struggle to keep pace with the dynamic electric vehicle market.

II. LITERATURE SURVEY

Tran et al[1] have reported the design of the hybrid electric vehicle (HEV) powertrain for enhanced performance by evaluating diverse powertrain components and configurations. The transportation sector’s reliance on fossil fuels has long been recognized as a significant contributor to climate change, primarily due to emissions from conventional vehicles. To address this issue, hybrid electric vehicles (HEV’s) have emerged as a cleaner alternative, capable of reducing emissions while potentially outperforming their conventional counterparts. This study focuses on exploring various powertrain configurations and components to develop a hybrid powertrain that meets the performance criteria outlined by the EcoCAR Mobility Challenge competition.

The performance criteria encompass essential factors such as acceleration, braking, driving range, fuel economy, and emissions. Utilizing MATLAB/Simulink simulations, five distinct powertrain designs were analyzed to evaluate their performance against these metrics. This study underscores the importance of hybrid powertrains in mitigating transportation-related emissions and sustainable mobility goals. By meticulously assessing various design options and leveraging advanced simulation tools, the research aims to contribute to the development of cleaner and more efficient vehicles capable of meeting stringent performance standards in real-world applications.

Oliver Moerth et al [2] in their paper discussed the principles of product design enhancing agile manufacturing for powertrain systems. Amidst the automotive industry’s struggle with heightened volatility and uncertainty, particularly impacting powertrain margins, agile manufacturing stands out as a pivotal strategy to maintain competitiveness. This research delves into the integration of agile principles throughout the powertrain lifecycle, underscoring the significance of product design in this context. Through comprehensive literature review and industry surveys, a comprehensive list of over 200 design principles, aligned with agile manufacturing characteristics, was curated and organized into seven primary objectives.

Surveys conducted among engineering and manufacturing entities provided valuable insights into the applicability and relevance of these principles in enhancing agile powertrain manufacturing processes. Furthermore, the study delineates the crucial manufacturing system capabilities necessary to embody agile traits effectively. Leveraging a domain mapping matrix facilitates the targeted application of pertinent product design principles, thereby strengthening specific agile manufacturing capabilities. Finally, the procedural model developed through this research undergoes rigorous evaluation to ensure its efficacy and practicality in real-world scenarios.

Lee [3] in his paper delves into the realm of agile manufacturing, a methodology crucial for adapting to the everchanging demands of modern production. Specifically, it explores the early integration of agile principles in the design phase of components and
manufacturing systems. The overarching goal is to enhance the manufacturing system’s ability to produce a diverse array of components rapidly and affordably. At the heart of this study lies the development and validation of a designated design rule tailored for agility. This rule serves as a guiding principle, aimed at streamlining manufacturing processes and reducing lead times, particularly in the face of consecutive changes in the product models. By embracing this design rule, manufacturers can effectively navigate through dynamic market landscapes, responding promptly to evolving customer preferences and market trends.

Central to the proposed approach is the concept of machine relocation. As product models evolve, the spatial arrangement of manufacturing equipment must be dynamically adjusted to optimize efficiency and minimize costs. However, such relocations necessitate careful consideration of various factors, including material handling expenses and the overall reconfiguration overhead. To address this intricate challenge, the paper by Yusuf [4] formulates a precise mathematical model encapsulating the machine relocating problem. This model serves as a theoretical framework for devising optimal relocation strategies that strike a balance between operational effectiveness and cost efficiency. Moreover, the study introduces a novel solution procedure meticulously crafted to tackle the complexities inherent in the relocation process.

The Ph.D. thesis of Schurig [5] sheds light on the broader implications of agile manufacturing in fostering innovation and competitiveness within the manufacturing sector. By embracing agility as a guiding philosophy, companies can proactively adapt to changing market dynamics, seize emerging opportunities, and effectively navigate through uncertainties. This work offers valuable insights into the integration of agile manufacturing principles in the design and operation of manufacturing systems. Through meticulous analysis and practical validation, it underscores the pivot role of agility in driving efficiency, flexibility, and competitiveness in modern manufacturing environments.

III. MODEL OF POWERTRAIN PRODUCTION FOR EV BASED CARS USING AGILE MANUFACTURING METHODOLOGIES

The waterfall cycle model of agile manufacturing emphasizes a sequential, phased approach to production, with each stage building upon the outputs of the previous stage. This structured methodology enables efficient coordination and collaboration among different teams and stakeholders involved in the manufacturing process, ultimately leading to the successful production of high-quality EV powertrains.

![Waterfall Cycle model for the production of EV powertrains](image)

Let’s now explore these characteristics further:

1. **Requirement Analysis:**

 In the initial phase of designing an electric vehicle (EV) powertrain, the first crucial step is requirement analysis. This entails a comprehensive process of identifying and gathering all necessary specifications, regulatory standards, and customer preferences. To achieve this, close collaboration between engineering teams, market analysts, and stakeholders is essential. Engineering teams bring their expertise in understanding the technical aspects and capabilities required for the powertrain to function optimally. Market analysts provide insights into current industry trends, emerging technologies, and customer demands. Stakeholders, including manufacturers, suppliers, and end-users, offer valuable input regarding specific features and functionalities desired in the powertrain. By pooling together, the knowledge and perspectives of these stakeholders, a clear and comprehensive set of requirements is defined, serving
as the foundation for the subsequent design and development phases of the EV powertrain.

2. Design Phase:

In the design phase of the electric vehicle (EV) powertrain development process, the focus shifts towards translating the gathered requirements into detailed design specifications. Building upon the insights obtained from the previous requirement analysis stage, engineers work diligently to develop comprehensive design specifications that outline the exact parameters and functionalities required for each component and subsystem of the powertrain. This involves designing critical elements such as the electric motor, battery pack, power electronics, and transmission system to meet the specific performance criteria while adhering to regulatory standards and customer preferences. To facilitate this process, advanced computer-aided design (CAD) software and simulation tools are employed. These tools enable engineers to create intricate 3D models of the powertrain’s components, allowing for meticulous optimization of design aspects such as efficiency, performance, and manufacturability. By leveraging CAD software and simulation tools, engineers can iteratively refine and fine-tune the design, ensuring that the final powertrain configuration meets the desired specifications and is ready for the subsequent stages of prototyping and testing.

3. Manufacturing Planning:

During the manufacturing planning phase of EV powertrain development, detailed attention is directed towards strategizing the production process for each individual component of the powertrain. This involves designing critical elements such as the electric motor, battery pack, power electronics, and transmission system to meet the specific performance criteria while adhering to regulatory standards and customer preferences. To facilitate this process, advanced computer-aided design (CAD) software and simulation tools are employed. These tools enable engineers to create intricate 3D models of the powertrain’s components, allowing for meticulous optimization of design aspects such as efficiency, performance, and manufacturability. By leveraging CAD software and simulation tools, engineers can iteratively refine and fine-tune the design, ensuring that the final powertrain configuration meets the desired specifications and is ready for the subsequent stages of prototyping and testing.

4. Component Procurement:

During the component procurement phase, the focus is on acquiring all the necessary elements, materials, and subsystems required for the powertrain assembly. This involves reaching out to various suppliers and vendors to source the components needed for the manufacturing process. Building strong partnership with reliable suppliers is crucial to guarantee both the quality and punctual delivery of these components. Once the components are obtained, thorough verification is conducted to ensure that they meet the specified design requirements and quality standards. This meticulous process of component procurement lays the foundation for a smooth and efficient manufacturing process, minimizing the risk of delays or discrepancies in the final product.

5. Assembly and Integration:

In the assembly and integration phase, the focus shifts towards putting together the individual components of the powertrain in accordance with the detailed design specifications. This involves diligent process of integrating key elements such as the electric motor, battery pack, power electronics, and other crucial subsystems into the powertrain assembly. Each component is carefully assembled to ensure precise alignment and functionality. Thorough testing and validation procedures are then carried out to verify the proper functioning and compatibility of all integrated components. This rigorous testing phase is essential for identifying any potential issues or discrepancies early on and ensuring that the powertrain meets the requirement performance standards. The successful completion of the assembly and integration phase is crucial for achieving a reliable and efficient powertrain system for electric vehicles.

6. Testing and Quality Assurance:

In the testing and quality assurance phase, extensive testing protocols are executed to validate the assembled powertrain’s performance, efficiency, and reliability. This involves conducting a series of comprehensive tests, including functional assessments, durability evaluations, and safety examinations, to thoroughly scrutinize the
powertrain’s functionality under various conditions. Through these tests, any potential defects or issues are identified, allowing for necessary adjustments or repairs to be made promptly. Additionally, stringent quality control measures are implemented throughout the testing process to uphold high standards of quality and reliability. By prioritizing thorough testing and quality assurance procedures, manufacturers can ensure that their powertrain systems meet or exceed industry standards and customer expectations, thereby enhancing the overall performance and safety of electric vehicles.

7. Deployment and Production Ramp-Up:

During the deployment and production ramp-up phase, the manufactured powertrains are deployed for installation in electric vehicles (EVs) or made available for sale as standalone components. This process involves carefully managing the transition from manufacturing to deployment, ensuring that production volume is scaled up gradually to meet the rising demand for electric vehicles in the market. As production volume increases, close monitoring of production processes and performance metrics is essential to identify any areas that may require improvement or optimization. By closely monitoring key performance indicators and production metrics, manufacturers can proactively address any challenges or bottlenecks that may arise, ensuring a smooth and efficient ramp-up of production. Ultimately, the goal of this phase is to successfully deploy the powertrains into the market while maintaining high standards of quality, reliability and efficiency to meet the growing demand for electric vehicles.

8. Maintenance and Support:

During the maintenance and support phase, the focus shifts to providing continuous support and maintenance services for the deployed powertrains, aiming to uphold their optimal performance and longevity. This entails promptly addressing any issues or defects that may arise through thorough troubleshooting and corrective actions. Manufacturers strive to maintain open channels of communication with customers promptly address any concerns and ensure a seamless ownership experience. Additionally, continuous feedback and lessons learned from field deployments are valuable in refining and improving both the design and manufacturing processes. By implementing iterative improvements based on real-world usage and feedback, manufacturers can enhance the reliability, efficiency, and overall performance of the powertrains overtime. This commitment to ongoing maintenance, support and continuous improvement underscores the manufacturer’s dedication to delivering a high-quality product and ensuring customer satisfaction throughout the lifecycle of the powertrain.

IV. COMPARATIVE ANALYSIS- PERFORMANCE OF EV POWERTRAIN

A comparative analysis based on the performance of electric vehicle (EV) powertrains involves evaluating key parameters such as efficiency, real range, real energy consumption, and usable battery capacity. Efficiency refers to how efficiently the powertrain converts electrical energy into mechanical energy to drive the vehicle. A higher efficiency indicates better utilization of energy and can result in longer driving range and lower energy consumption.

Real range refers to the distance an EV can travel on a single charge under real-world driving conditions, taking into account factors like speed, terrain, weather, and driving habits. It provides a more accurate representation of the EV’s practical driving range compared to laboratory tests. Real energy consumption measures the actual amount of energy consumed by the EV during real-world driving scenarios. It considers factors like acceleration, braking, speed variations, and environmental conditions to provide a realistic estimate of energy usage.

Usable battery capacity cites to the portion of the battery’s total capacity that is available for driving the vehicle. It accounts for factors like battery degradation over time, temperature fluctuations, and the need to maintain a buffer for battery health. A higher usable battery capacity translates to a longer driving range and better overall performance of the EV powertrain.
Fig 1: Assessing efficiency in Wh/km across five EV powertrain manufacturers

Fig 2: Evaluation of real range in km among five EV powertrain manufacturers

Fig 3: Comparison of real energy consumption in Wh/km within five EV powertrain manufacturers

Fig 4: Correlation of usable battery in kWh between five EV powertrain manufacturers
C1= Company 1
C2= Company 2
C3= Company 3
C4= Company 4
C5= Company 5

These visual charts let us know the correlation among 5 EV car companies in view of different boundaries such as efficiency, real range, real energy consumption, and usable battery capacity to be considered for the good performance of EV powertrain.

V. CONCLUSION:
In conclusion, the adoption of agile manufacturing principles in powertrain production for EV-based car companies presents a promising avenue for enhancing performance and competitiveness. Through the utilization of the waterfall cycle model across five companies, this paper has shed light on the potential benefits of agile methodologies in this context. By evaluating various powertrain configurations and production methodologies based on parameters like efficiency, real range, real energy consumption and usable battery capacity, companies can identify strategies to optimize their production processes. This comparative analysis serves as a valuable tool for car manufacturers, offering insights into how they can refine their approaches to powertrain manufacturing to meet the evolving demands of the electric vehicle market and drive innovation in the industry.

Moreover, the confidentiality measures taken to mask the identities of the companies involved emphasize the importance of privacy and security in collaborative research endeavors. As they continue to navigate the transition towards electric mobility, the findings of this study provide valuable guidance for informed decision-making and strategic planning. By leveraging
agile manufacturing principles, these companies can not only enhance the performance of their electric vehicles but also contribute to the broader goal of sustainable transportation and environmental conservation.

VI. FUTURE WORK:
Future work in this area could focus on expanding the score of comparative analysis to include a broader range of companies and geographical regions. By incorporating data from additional stakeholders in the electric vehicle industry, future research could provide a more comprehensive understanding of the effectiveness of agile manufacturing in powertrain production. Furthermore, exploring the integration of emerging technologies such as artificial intelligence and machine learning into agile manufacturing processes could offer new insights and opportunities for optimization. Additionally, conducting longitudinal studies to track the long-term impact of agile manufacturing strategies on the performance and sustainability of electric vehicles would provide valuable insights for continuous improvement and innovation in the field.

REFERENCES